Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
готовые шпоры по мкт.doc
Скачиваний:
12
Добавлен:
26.09.2019
Размер:
2.19 Mб
Скачать

§9. Сжижение газов

Как следует из анализа изотерм Ван-дер-Ваальса, всякий газ может быть переведен в жидкое состояние путем сжатия, если его температура ниже критической температуры. Например, углекислый газ можно превратить в жидкость при комнатной температуре, поскольку его критическая температура равна 31,10С. Но есть такие газы, которые при комнатной температуре нельзя перевести в жидкое состояние как бы его не сжали. К таким газам относятся, например, воздух, водород, гелий, кислород, у которых критические температуры значительно ниже комнатной. До открытия критической температуры (1822г.) их считали непослушными газами, т.е. газами, не способными сжижаться.

Для сжижения таких газов их необходимо охладить до температуры несколько ниже критической, после чего повышением давления газ может быть переведен в жидкое состояние. Сжиженный таким образом газы удобно хранить под атмосферным давлением (в открытом сосуде), но в этом случае их температура должна быть еще более низкой, чтобы давление соответствующее насыщенному пару, т.е. горизонтальному участку изотермы, было равно 1 атм. Для азота такая изотерма соответствует температуре -195,80С, в то время как критическая температура азота равна -147,10С.

Таким образом, чтобы газ сжижать, необходимо его достаточно сильно охладить. Для достижения такого сильного охлаждения используются два метода. Первый из них связан с использованием так называемого эффекта Джоуля-Томсона.

48. Эффект Джоуля-Томсона

Для наблюдения этого эффекта газ при достаточно большом давлении вынуждают протекать через пористую теплоизолированную перегородку. Это означает, что проток происходит адиабатно.

Гидродинамическое сопротивление перегородки приводит к тому, что на ней теряется, часть давления и газ выходит из перегородка при более низком давлении. Это означает, что газ расширяется или же дросселируется. Для того, чтобы течение газа было стационарным, т.е. происходило при постоянных значениях давлений, по обе стороны перегородки необходим какой-либо насос (компрессор), который поддерживал бы постоянным эти давления. Этот насос производит внешнюю работу сжатия газа, которая расходуется на преодоление сопротивления дросселя.

Покажем, что для неидеального газа процесс Джоуля-Томсона сопровождается изменением температуры, причем, такое же расширение идеального газа не вызывает никакого изменения температуры.

Явление изменения температуры газа при его адиабатном расширении дросселированием от одного постоянного давления к другому называется эффектом Джоуля-Томсона. Изменение температуры неидеального газа в процессе Джоуля-Томсона объясняется тем, что при расширении газа увеличивается расстояние между молекулами и совершается внутренняя работа против сил взаимодействия между молекулами. За счет этой работы изменяется кинетическая энергия молекул, а, следовательно, и температура.

Количественно эффект Джоуля-Томсона характеризуется дифференциальным коэффициентом Джоуля-Томсона , который определяется отношением изменения температуры газа к вызвавшему его изменению давления :

.

Для вычисления этого коэффициента детально проанализируем этот процесс с помощью следующей схемы.

Пусть 1 моль газа занимает объем между перегородкой и поршнем (рис.7), а после прохождения через перегородку - объем между перегородкой и поршнем . Поскольку при сжатии газа давление остается постоянным внешняя работа . Газ, переходя через перегородку, расширяется и совершает работу . Общая работа расширения газа

.

Так как процесс Джоуля-Томсона является адиабатическим . Согласно первому закону термодинамики, работа должна равняться изменению внутренней энергии, т.е.

,

где и - внутренняя энергия моля газа до и после расширения. Это выражение можно переписать следующим образом:

.

Термодинамический потенциал мы назвали энтальпией. Таким образом, процесс Джоуля-Томсона происходит так, что энтальпия остается постоянной по обе стороны перегородки, т.е.

.

Для идеального газа и зависят только от температуры, поэтому и энтальпия зависит только от температуры. Равенство энтальпий по обе стороны перегородки означает и равенство температур. Значит, для идеального газа коэффициент Джоуля-Томсона равен нулю. Для неидеального газа внутренняя энергия зависит не только от температуры, но и от объема , занимаемого газом. Кроме того, зависит от объема. Поэтому в случае неидеального газа равенство энтальпий по стороне перегородки не означает равенство температур.

Д ействительно, опыт показывает, что большинство газов, такие как азот, кислород, углекислота в процессе дросселирования при комнатной температуре охлаждаются. Но такие газы как водород, гелий при тех же условиях нагреваются.

Отметим, что процесс Джоуля-Томсона необратимый, следовательно, он сопровождается увеличением энтропии .

Выражение для дифференциала энтальпии, как было показано выше, имеет вид

. (5.15)

Воспользуемся выражением (1.51) для дифференциала энтропии через изменение температуры и изменение давления :

.

Поставляя это выражение в (5.15) получим:

.

Отсюда получим выражение для коэффициента Джоуля-Томсона:

, (5.16)

где - коэффициент объемного расширения газа. Все величины, входящие в выражение для могут быть определены, если известно уравнение состояния газа.

Из формулы (5.16) следует, что знак коэффициента зависит от величины .

При , при . Для идеального газа . Для реальных газов может быть как положительным, так и отрицательным. Более того, для одного и того же газа в одной области температур может быть положительным, а в другой - отрицательным. Существует температура , характерная для данного газа, при которой коэффициент Джоуля-Томсона меняет свой знак. Эта температура называется температурой инверсии.

49. Вычислим коэффициент Джоуля-Томсона для газа Ван-дер-Ваальса. Для этого необходимо вычислить производную . Для этого раскроем скобки в левой части уравнения Ван-дер-Ваальса (5.5) и получим

.

Продифференцируем обе части уравнения по при :

.

Вместо поставим его значение из уравнения Ван-дер-Ваальса (5.5) и получим

.

Приведя выражение в квадратных скобках к общему знаменателю, получим:

.

После преобразования квадратной скобки, имеем:

.

Поставив это выражение в (5.16), получим:

.

После приведения квадратной скобки к общему знаменателю, имеем следующее выражение для коэффициента Джоуля-Томсона:

,

которое можно переписать в виде:

. (5.17)

Если давление газа не очень велико (порядка 100-200 атм.), то , и ими в (5.17) можно пренебречь. Тогда

.

Из этой формулы видно, что коэффициент Джоуля-Томсона положителен, если или . При коэффициент Томсона , т.е. газ при дросселировании нагревается. Температура инверсии определяется равенством .

Тот факт, что в опыте Джоуля-Томсона, который ставился при комнатной температуре, водород при расширении нагревался, в то время как другие газы охлаждались, не является, конечно, особым свойством водорода. Любой газ обнаружит такие же свойства, если ставить опыт при температуре более высокой, чем температура инверсии.