
- •Все вещества состоят из атомов или молекул
- •Атомы и молекулы веществ находятся в состоянии беспорядочного движения
- •Между атомами и молекулами вещества действуют как силы притяжения, так и силы отталкивания.
- •2. Давление
- •3. Уравнение состояния идеального газа
- •4. Законы идеальных газов
- •Изотермический процесс
- •Изобарический процесс
- •Изохорический процесс
- •Закон Авогадро
- •Закон Дальтона
- •5. Барометрическая формула
- •З акон Больцмана
- •6. Распределение молекул по скоростям
- •7. Функция распределения
- •9. Формула Максвелла
- •10. Средняя арифметическая, средняя квадратичная и наивероятнейшая скорости молекул
- •11. Кинетическая теория теплоты Внутренняя энергия идеального газа
- •12. Первое начало термодинамики
- •§5. Макроскопическая работа
- •13. Различные приложения I начала термодинамики. Теплоёмкость
- •15, 16 Классическая теория теплоёмкости и её недостатки
- •19. Адиабатический процесс. Уравнение Пуассона
- •20. Работа при адиабатическом изменении объёма газа
- •21. Политропический процесс
- •22. Столкновение молекул и явления переноса
- •§2. Среднее число столкновений в единицу времени и средняя длина свободного пробега молекул
- •§3. Рассеяние молекулярного пучка в газе
- •23. Явление переноса в газах. Уравнение переноса
- •24. Диффузия
- •25. Теплопроводность газов
- •26. Вязкость газов (внутреннее трение)
- •28. Неидеальные газы. Уравнение Ван-дер-Ваальса. Отклонение свойств газов от идеальности
- •29. Фаза и фазовые равновесия
- •30. Уравнение Ван-Дер-Ваальса
- •31. Изотермы Ван-дер-Ваальса
- •32. Критическая температура и критическое состояние
- •33. Приведенное уравнение Ван-дер-Ваальса. Закон соответственных состояний
- •34. Равновесные состояния
- •Обратимые и необратимые процессы
- •35. Необратимость и вероятность
- •37. Внутренняя энергия
- •38. Цикл Карно
- •39. Коэффициент полезного действия в цикле Карно
- •. Холодильная машина
- •40. Свободная энергия
- •41. Энтропия
- •42. Некоторые термодинамические соотношения
- •44 Закон возрастания энтропии. Второе начало термодинамики
- •Увеличение энтропии при теплопередаче
- •45. Энтропия и вероятность
- •46 Энтропия и беспорядок
- •47. Третье начало термодинамики
- •§9. Сжижение газов
- •48. Эффект Джоуля-Томсона
- •50. Строение жидкостей
- •51. Поверхностное натяжение
- •52. Условия равновесия на границе двух сред. Краевой угол
- •53. Силы, возникающие на кривой поверхности жидкости
- •54. Капиллярные явления
- •55. Упругость насыщенного пара над кривой поверхностью жидкости
- •56. Условия равновесия фаз химически однородного вещества
- •§3. Уравнение Клапейрона
40. Свободная энергия
Представим, что система совершает изотермический процесс (расширение или сжатие). Расширяясь, газ, может произвести механическую работу, следовательно, газ обладает некоторой энергией. Та часть энергии, которая при данном условии может быть превращена в механическую работу, называется свободной энергией.
Система не может совершить работу, превышающую значение её свободной энергии. В механике механическая макроскопическая энергия системы может быть полностью превращена в работу. Внутренняя энергия молекулярной системы в случае изотермического процесса не может быть целиком превращена в работу. Поэтому, если мы интересуемся величиной работы, которую система в данном состоянии может произвести при изотермическом процессе, то внутренняя энергия не является подходящей характеристикой этого состояния. Внутренняя энергия характеризует состояние системы, если интересуемся работой, которую способна эта система произвести при адиабатическом процессе A=U. Свободная энергия должна характеризовать систему с точки зрения её работоспособности при изотермическом изменении её состояния.
Свободная энергия системы измеряется работой, которую может произвести система, изменяя своё состояние изотермически и обратимо от состояния, в котором она находится, до выбранного нами начального состояния, при котором свободная энергия предполагается равной нулю, dA=-dF, где F- свободная энергия.
Внутренняя энергия идеального газа не зависит от занимаемого им объёма: один моль газа сжатый в баллоне имеет такую же внутреннюю энергию как и не сжатый газ при той же температуре. Но сжатый газ имеет большую свободную энергию, поскольку при изотермическом расширении может совершать большую работу. В случае необратимых процессов dA<dF.
Возможны такие случаи, когда изменение свободной энергии вообще не сопровождается совершением работы. Если идеальный газ расширится в пустоту, то никакой работы не совершается. Температура, а значит, и внутренняя энергия газа также остаются неизменными. Между тем свободная энергия газа уменьшается, так как уменьшается работа, которую газ может совершить.
41. Энтропия
Из цикла Карно мы видим, что количество тепла, которое должно быть доставлено телу или отнято у него при переходе из одного состояние в другое не определяется начальными и конечными состояниями, но существенно зависит от способа осуществления этого перехода. Функция Q не является функцией состояния, как внутренняя энергия и свободная энергия. Это видно из уравнения первого закона термодинамики
Q=dU+A.
Так как A зависит от пути перехода, то и Q будет зависеть от способа перехода из одного состояния в другое. Количество теплоты Q0, доставленное телу от нагревателя при температуре T0 не равно количеству теплоты Q1, переданное им холодильнику при температуре T1. В то же время равны между собой
.
Величину
называют
приведённой теплотой и это равенство
говорит о равенстве приведённых тепло,
полученных или отданных рабочим телом
при круговом процессе. Кроме того, как
следует из выражения (1.38), сумма приведенных
теплот в замкнутом цикле Карно равняется
нулю. Эта особенность теплоты позволяет
ввести особую термодинамическую
величину- энтропию, имеющую фундаментальное
значение в физике.
Любое изменение состояния тела в общем случае можно представить как результат бесконечно большого числа бесконечно малых изменений. При таком бесконечно малом изменении состояния система либо поглощает, либо выделяет бесконечно малое количество тепла Q. Можно показать, что если в результате каких-либо изменений состояния обратимым путём система переходит из состояния A в состояние B, то сумма приведённых количеств теплоты
не
зависит от пути от A
к B,
для круговых процессов
.
Это
даёт нам право утверждать, что присутствует
некоторая величина S,
являющаяся функцией состояния системы,
причем
.
Эта формула позволяет определить не абсолютное значение функции, соответствующее данному состоянию, а лишь её изменением при переходе от одного состояния к другому. Обычно значение энтропии одного из состояний берут равной нулю. Тогда
.
Это и есть энтропия системы в данном состоянии. На практике важно только изменение энтропии при изменении состояния системы, поэтому неважно, к какому состоянию приписать нулевое значение энтропии. Принято считать энтропию равной нуль в состоянии, когда T=0.
Таким образом, элементарное изменение энтропии определяется выражением
.
Отметим, что Q не является полным дифференциалом, так как Q не является функцией состояния, Q становится полным дифференциалом после деления на T. Величина 1/T является интегрирующим множителем для Q.
С учетом выражения для dS первый закон термодинамики можно записать в виде
.
(1.39)
Это уравнение носит название термодинамического тождества. Его называют вторым началом термодинамики для обратимых процессов. Если круговой процесс, претерпеваемый системой необратим, то
.
Это выражение называется неравенством Клаузиуса.