
- •Часть 2
- •Содержание
- •Лекция 1. Дифференциальное исчисление функции одной переменной.
- •1.1. Определение производной. Механический, геометрический, экономический смысл производной.
- •1.2. Касательная и нормаль к графику функции.
- •1.3. Дифференцируемость и непрерывность.
- •1.1. Определение производной. Механический, геометрический, экономический смысл производной.
- •1.2. Касательная и нормаль к графику функции.
- •1.3. Дифференцируемость и непрерывность.
- •Лекция 2. Правила дифференцирования.
- •2.1. Правила дифференцирования суммы, произведения и частного двух функций
- •2.2. Производные обратной и сложной функций
- •2.3. Производные элементарных функций
- •2.1. Правила дифференцирования суммы, произведения и частного двух функций.
- •2.2. Производные обратной и сложной функций.
- •2.3. Производные элементарных функций.
- •Лекция 3. Дифференциал функции.
- •3.1. Условие дифференцируемости функции в точке.
- •3.2.Определение дифференциала, геометрический смысл и правила вычисления дифференциала. Использование дифференциала в приближенных вычислениях.
- •3.3. Производные и дифференциалы высших порядков.
- •3.1. Условие дифференцируемости функции в точке.
- •3.2. Определение дифференциала, геометрический смысл и правила вычисления дифференциала. Использование дифференциала в приближенных вычислениях.
- •3.3. Производные и дифференциалы высших порядков.
- •Лекция 4. Основные теоремы дифференциального исчисления.
- •4.1. Теорема Ферма.
- •4.2. Теорема Ролля.
- •4.3. Теорема Лагранжа.
- •4.4. Теорема Коши.
- •4.5. Правило Лопиталя.
- •4.6. Формула Тейлора.
- •Лекция 5. Применение производных к исследованию функций.
- •5.1. Условие монотонности функции. Определение максимума и минимума функции в точке.
- •5.2. Необходимое условие существования экстремума функции одной переменной.
- •5.3. Достаточное условие существования экстремума функции одной переменной.
- •5.4. Наибольшее и наименьшее значения функции на отрезке.
- •5.5. Определение выпуклости и вогнутости графика функции. Достаточное условие выпуклости и вогнутости графика. Необходимое и достаточное условие существования точки перегиба.
- •5.6. Асимптоты графика функции.
- •Лекция 6. Функции многих переменных.
- •6.1. Определение функции двух переменных, область определения функции, график функции.
- •6.2. Определения предела и непрерывности функции двух переменных. Свойства непрерывных функций.
- •6.3. Частные производные.
- •6.1. Определение функции двух переменных, область определения функции, график функции.
- •6.2. Определения предела и непрерывности функции двух переменных. Свойства непрерывных функций.
- •6.3. Частные производные.
- •Лекция 7. Дифференцируемость функции двух переменных.
- •7.1. Определение дифференцируемости функции двух переменных. Определение полного дифференциала. Приближенные вычисления с помощью полного дифференциала.
- •7.2. Частные производные и дифференциалы высших порядков. Теорема о равенстве смешанных частных производных.
- •7.3. Производная функции по направлению.
- •7.4. Градиент функции.
- •7.5. Экстремумы функции двух переменных. Необходимое и достаточное условия существования экстремумов.
- •Лекция 8. Метод наименьших квадратов.
- •8.1. Метод наименьших квадратов
- •8.2.Применение метода наименьших квадратов (случай линейной зависимости).
- •8.3. Использование метода наименьших квадратов на фондовой бирже.
- •8.1. Метод наименьших квадратов.
- •8.2. Применение метода наименьших квадратов (случай линейной зависимости).
- •8.3. Использование метода наименьших квадратов на фондовой бирже.
- •Лекция 9. Интегральное исчисление функции одной переменной.
- •9.1.Определение первообразной функции. Теорема о разности первообразных.
- •9.2. Определение неопределенного интеграла и его основные свойства. Таблица неопределенных интегралов элементарных функций.
- •9.3. Основные методы интегрирования функций.
- •9.1. Определение первообразной функции. Теорема о разности первообразных.
- •9.2. Определение неопределенного интеграла и его основные свойства.
- •9.3. Основные методы интегрирования функций.
- •Лекция 10. Интегрирование некоторых классов функций.
- •10.1. Интегрирование простейших рациональных дробей.
- •10.2. Интегрирование рациональных дробей методом разложения на простейшие дроби.
- •10.3. Интегрирование некоторых тригонометрических функций.
- •10.4. Интегрирование некоторых иррациональных выражений. Некоторые тригонометрические подстановки.
- •Лекция 11. Определенный интеграл.
- •11.1. Определение определенного интеграла. Геометрический смысл определенного интеграла. Интегрируемость функций.
- •11.2. Свойства определенного интеграла.
- •11.3. Теорема о среднем значении определенного интеграла.
- •11.1. Определение определенного интеграла. Геометрический смысл определенного интеграла. Интегрируемость функций.
- •11.2. Свойства определенного интеграла.
- •11.3. Теорема о среднем значении определенного интеграла.
- •Лекция 12. Основная формула интегрального исчисления.
- •12.1. Определенный интеграл с переменным верхним пределом интегрирования и его свойства.
- •12.2. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
- •12.3. Методы интегрирования определенного интеграла.
- •12.4. Геометрические приложения определенного интеграла.
- •12.5. Несобственные интегралы.
- •Лекция 13. Дифференциальные уравнения первого порядка.
- •13.1. Определение дифференциального уравнения. Основные понятия.
- •13.2. Дифференциальные уравнения первого порядка. Основные понятия. Теорема существования и единственности решения.
- •13.3. Дифференциальные уравнения первого порядка с разделяющимися переменными.
- •13.4. Линейные дифференциальные уравнения первого порядка.
- •13.5. Однородные дифференциальные уравнения первого порядка.
- •Лекция 14. Дифференциальные уравнения второго порядка.
- •14.1. Определение дифференциальных уравнений второго порядка. Основные понятия.
- •14.2. Линейные дифференциальные уравнения второго порядка. Фундаментальная система решений (фср). Теоремы об общем решении.
- •14.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •14.4. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами их частные решения в зависимости от вида правой части. Метод вариации произвольных постоянных.
- •Лекция 15. Числовые ряды.
- •15.1. Определение числового ряда. Сходимость рядов, свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- •15.2. Ряды с положительными членами. Достаточные признаки сходимости положительных рядов (принцип сравнения, радикальный признак Коши, признак Даламбера). Интегральный признак Коши-Маклорена.
- •15.3. Определение знакопеременного ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •15.1. Определение числового ряда. Сходимость рядов, свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- •15.2. Ряды с положительными членами. Достаточные признаки сходимости положительных рядов (принцип сравнения, радикальный признак Коши, признак Даламбера). Интегральный признак Коши-Маклорена.
- •15.3. Определение знакопеременного ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •Лекция 16. Степенные ряды. Функциональные ряды
- •16.1. Определение степенного ряда.
- •16.2. Теорема Абеля. Радиус сходимости степенного ряда. Дифференцирование и интегрирование степенных рядов.
- •16.3. Определение ряда Тейлора. Ряд Маклорена.
- •16.4. Разложение функции в степенной ряд. Необходимое и достаточное условие разложения функции в степенной ряд. Достаточное условие разложения функции в степенной ряд.
- •16.5. Разложение элементарных функций в степенные ряды.
- •Раздел VIII.
- •Лекция 17. Модели межотраслевого баланса.
- •17.1. Статическая модель межотраслевого баланса – модель Леонтьева.
- •17.2. Динамическая модель межотраслевого баланса.
- •17.3. Линейная модель торговли.
- •17.1. Статическая модель межотраслевого баланса – модель Леонтьева.
- •17.2. Динамическая модель межотраслевого баланса.
- •17.3. Линейная модель торговли.
- •Лекция 18. Модели общего экономического равновесия.
- •18.1. Простейшая модель экономического равновесия.
- •18.2. Паутинообразная модель
- •18.3. Модель Эванса.
- •18.4. Модель Эрроу – Гурвица.
- •18.5. Модель рынка с прогнозируемыми ценами.
- •Лекция 19. Производственные функции и их характеристики.
- •19.1. Производственные функции и их основные характеристики.
- •19.2. Оптимальное распределение ресурсов.
- •19.3. Максимизация прибыли производства продукции.
- •19.4. Модели поведения фирмы в условиях совершенной и несовершенной конкуренции.
- •Рекомендуемая литература.
Лекция 16. Степенные ряды. Функциональные ряды
16.1. Определение степенного ряда.
16.2. Теорема Абеля. Радиус сходимости степенного ряда. Дифференцирование и интегрирование степенных рядов.
16.3. Определение ряда Тейлора. Ряд Маклорена.
16.4. Разложение функции в степенной ряд. Необходимое и достаточное условие разложения функции в степенной ряд. Достаточное условие разложения функции в степенной ряд.
16.5. Разложение элементарных функций в степенные ряды.
16.1. Определение степенного ряда.
Определение.
Ряд называется функциональным, если
его члены являются функциями от x,
определенными на (a;b):
(1).
Если
,
то
(2) – числовой ряд.
Определение. Если сходится числовой ряд (2), то функциональный ряд (1) называется сходящимся в точке и точка называется точкой сходимости ряда (1).
Определение. Если сходящийся числовой ряд (2) расходится, то функциональный ряд (1) называется расходящимся в точке и точка называется точкой расходимости ряда (1).
Совокупность всех точек сходимости функционального ряда называется его областью сходимости.
Частным случаем функциональных рядов являются степенные ряды.
Определение.
Степенным рядом с центром в точке 0,
называется ряд вида
(3), где
– действительные числа.
Всякий степенной ряд сходится в своем центре при x=0.
16.2. Теорема Абеля. Радиус сходимости степенного ряда. Дифференцирование и интегрирование степенных рядов.
Теорема
(Абеля). Если степенной ряд (3) сходится
в точке
,
то он
сходится абсолютно
при всех
.
Если степенной ряд расходится в
точке
,
то он расходится при всех
.
Из теоремы Абеля вытекает, что область сходимости степенного ряда есть некоторый, симметричный относительно центра, промежуток.
О
пределение.
Число R
называется радиусом сходимости
степенного ряда,
если степенной
ряд (3) сходится для каждого
и расходится для всех
.
Для степенных рядов возможны три случая:
1) При R=0
ряд (3) сходится в единственной точке
x=0.
При каждом
ряд расходится.
2) При
ряд (3) сходится
на всей числовой оси.
3) При
ряд сходится для
всех
и расходится при
.
На концах интервала в точках x=-R
и
x=R
степенной ряд может либо сходиться,
либо расходиться. Эти точки дополнительного
исследования.
Радиус сходимости ряда (3) определяется по формулам
или
.
Теорема. Степенной ряд внутри интервала сходимости можно почленно дифференцировать и интегрировать, при этом радиус сходимости ряда не меняется. Вновь полученные ряды сходятся абсолютно на (-R;R).
Замечание. Сходимость ряда может измениться на концах интервала сходимости.
16.3. Определение ряда Тейлора. Ряд Маклорена.
Пусть функция y= в окрестности точки имеет непрерывные производные до (п+1) - го порядка включительно, тогда имеет место
формула Тейлора:
(4), где
- остаточный член.
Если функция у=
в окрестности точки
бесконечно дифференцируема и
,
то получим ряд Тейлора
+…
(5).
Если в ряде Тейлора
=0.
то полученный
степенной ряд называется рядом Маклорена
+…
(6).
16.4. Разложение функции в степенной ряд. Необходимое и достаточное условие разложения функции в степенной ряд. Достаточное условие разложения функции в степенной ряд.
Если
бесконечно дифференцируема в окрестности
точки
и формально составленный степенной ряд
для этой функции сходится и его сумма
равна
,
то говорят, что
разлагается в
степенной ряд.
Теорема 1. Если функция разлагается в степенной ряд, то это разложение единственно.
Теорема 2.
(необходимое и достаточное условие
разложения функции в степенной ряд).
Для того, чтобы
разлагалась в степенной ряд, необходимо
и достаточно, чтобы
была бесконечно дифференцируема в
окрестности точки
и чтобы в формуле Тейлора (4)
.
Теорема 3.
(достаточное условие разложения функции).
Если в окрестности
точки
функция
бесконечно дифференцируема и все её
производные ограничены по модулю сверху
числом M,
то есть
,
то функция разлагается в степенной ряд.
Ряды Тейлора и Маклорена – степенные ряды, позволяют оценить ошибки в приближенных равенствах, получить приближенные равенства нового типа.