
- •Часть 2
- •Содержание
- •Лекция 1. Дифференциальное исчисление функции одной переменной.
- •1.1. Определение производной. Механический, геометрический, экономический смысл производной.
- •1.2. Касательная и нормаль к графику функции.
- •1.3. Дифференцируемость и непрерывность.
- •1.1. Определение производной. Механический, геометрический, экономический смысл производной.
- •1.2. Касательная и нормаль к графику функции.
- •1.3. Дифференцируемость и непрерывность.
- •Лекция 2. Правила дифференцирования.
- •2.1. Правила дифференцирования суммы, произведения и частного двух функций
- •2.2. Производные обратной и сложной функций
- •2.3. Производные элементарных функций
- •2.1. Правила дифференцирования суммы, произведения и частного двух функций.
- •2.2. Производные обратной и сложной функций.
- •2.3. Производные элементарных функций.
- •Лекция 3. Дифференциал функции.
- •3.1. Условие дифференцируемости функции в точке.
- •3.2.Определение дифференциала, геометрический смысл и правила вычисления дифференциала. Использование дифференциала в приближенных вычислениях.
- •3.3. Производные и дифференциалы высших порядков.
- •3.1. Условие дифференцируемости функции в точке.
- •3.2. Определение дифференциала, геометрический смысл и правила вычисления дифференциала. Использование дифференциала в приближенных вычислениях.
- •3.3. Производные и дифференциалы высших порядков.
- •Лекция 4. Основные теоремы дифференциального исчисления.
- •4.1. Теорема Ферма.
- •4.2. Теорема Ролля.
- •4.3. Теорема Лагранжа.
- •4.4. Теорема Коши.
- •4.5. Правило Лопиталя.
- •4.6. Формула Тейлора.
- •Лекция 5. Применение производных к исследованию функций.
- •5.1. Условие монотонности функции. Определение максимума и минимума функции в точке.
- •5.2. Необходимое условие существования экстремума функции одной переменной.
- •5.3. Достаточное условие существования экстремума функции одной переменной.
- •5.4. Наибольшее и наименьшее значения функции на отрезке.
- •5.5. Определение выпуклости и вогнутости графика функции. Достаточное условие выпуклости и вогнутости графика. Необходимое и достаточное условие существования точки перегиба.
- •5.6. Асимптоты графика функции.
- •Лекция 6. Функции многих переменных.
- •6.1. Определение функции двух переменных, область определения функции, график функции.
- •6.2. Определения предела и непрерывности функции двух переменных. Свойства непрерывных функций.
- •6.3. Частные производные.
- •6.1. Определение функции двух переменных, область определения функции, график функции.
- •6.2. Определения предела и непрерывности функции двух переменных. Свойства непрерывных функций.
- •6.3. Частные производные.
- •Лекция 7. Дифференцируемость функции двух переменных.
- •7.1. Определение дифференцируемости функции двух переменных. Определение полного дифференциала. Приближенные вычисления с помощью полного дифференциала.
- •7.2. Частные производные и дифференциалы высших порядков. Теорема о равенстве смешанных частных производных.
- •7.3. Производная функции по направлению.
- •7.4. Градиент функции.
- •7.5. Экстремумы функции двух переменных. Необходимое и достаточное условия существования экстремумов.
- •Лекция 8. Метод наименьших квадратов.
- •8.1. Метод наименьших квадратов
- •8.2.Применение метода наименьших квадратов (случай линейной зависимости).
- •8.3. Использование метода наименьших квадратов на фондовой бирже.
- •8.1. Метод наименьших квадратов.
- •8.2. Применение метода наименьших квадратов (случай линейной зависимости).
- •8.3. Использование метода наименьших квадратов на фондовой бирже.
- •Лекция 9. Интегральное исчисление функции одной переменной.
- •9.1.Определение первообразной функции. Теорема о разности первообразных.
- •9.2. Определение неопределенного интеграла и его основные свойства. Таблица неопределенных интегралов элементарных функций.
- •9.3. Основные методы интегрирования функций.
- •9.1. Определение первообразной функции. Теорема о разности первообразных.
- •9.2. Определение неопределенного интеграла и его основные свойства.
- •9.3. Основные методы интегрирования функций.
- •Лекция 10. Интегрирование некоторых классов функций.
- •10.1. Интегрирование простейших рациональных дробей.
- •10.2. Интегрирование рациональных дробей методом разложения на простейшие дроби.
- •10.3. Интегрирование некоторых тригонометрических функций.
- •10.4. Интегрирование некоторых иррациональных выражений. Некоторые тригонометрические подстановки.
- •Лекция 11. Определенный интеграл.
- •11.1. Определение определенного интеграла. Геометрический смысл определенного интеграла. Интегрируемость функций.
- •11.2. Свойства определенного интеграла.
- •11.3. Теорема о среднем значении определенного интеграла.
- •11.1. Определение определенного интеграла. Геометрический смысл определенного интеграла. Интегрируемость функций.
- •11.2. Свойства определенного интеграла.
- •11.3. Теорема о среднем значении определенного интеграла.
- •Лекция 12. Основная формула интегрального исчисления.
- •12.1. Определенный интеграл с переменным верхним пределом интегрирования и его свойства.
- •12.2. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
- •12.3. Методы интегрирования определенного интеграла.
- •12.4. Геометрические приложения определенного интеграла.
- •12.5. Несобственные интегралы.
- •Лекция 13. Дифференциальные уравнения первого порядка.
- •13.1. Определение дифференциального уравнения. Основные понятия.
- •13.2. Дифференциальные уравнения первого порядка. Основные понятия. Теорема существования и единственности решения.
- •13.3. Дифференциальные уравнения первого порядка с разделяющимися переменными.
- •13.4. Линейные дифференциальные уравнения первого порядка.
- •13.5. Однородные дифференциальные уравнения первого порядка.
- •Лекция 14. Дифференциальные уравнения второго порядка.
- •14.1. Определение дифференциальных уравнений второго порядка. Основные понятия.
- •14.2. Линейные дифференциальные уравнения второго порядка. Фундаментальная система решений (фср). Теоремы об общем решении.
- •14.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •14.4. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами их частные решения в зависимости от вида правой части. Метод вариации произвольных постоянных.
- •Лекция 15. Числовые ряды.
- •15.1. Определение числового ряда. Сходимость рядов, свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- •15.2. Ряды с положительными членами. Достаточные признаки сходимости положительных рядов (принцип сравнения, радикальный признак Коши, признак Даламбера). Интегральный признак Коши-Маклорена.
- •15.3. Определение знакопеременного ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •15.1. Определение числового ряда. Сходимость рядов, свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- •15.2. Ряды с положительными членами. Достаточные признаки сходимости положительных рядов (принцип сравнения, радикальный признак Коши, признак Даламбера). Интегральный признак Коши-Маклорена.
- •15.3. Определение знакопеременного ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •Лекция 16. Степенные ряды. Функциональные ряды
- •16.1. Определение степенного ряда.
- •16.2. Теорема Абеля. Радиус сходимости степенного ряда. Дифференцирование и интегрирование степенных рядов.
- •16.3. Определение ряда Тейлора. Ряд Маклорена.
- •16.4. Разложение функции в степенной ряд. Необходимое и достаточное условие разложения функции в степенной ряд. Достаточное условие разложения функции в степенной ряд.
- •16.5. Разложение элементарных функций в степенные ряды.
- •Раздел VIII.
- •Лекция 17. Модели межотраслевого баланса.
- •17.1. Статическая модель межотраслевого баланса – модель Леонтьева.
- •17.2. Динамическая модель межотраслевого баланса.
- •17.3. Линейная модель торговли.
- •17.1. Статическая модель межотраслевого баланса – модель Леонтьева.
- •17.2. Динамическая модель межотраслевого баланса.
- •17.3. Линейная модель торговли.
- •Лекция 18. Модели общего экономического равновесия.
- •18.1. Простейшая модель экономического равновесия.
- •18.2. Паутинообразная модель
- •18.3. Модель Эванса.
- •18.4. Модель Эрроу – Гурвица.
- •18.5. Модель рынка с прогнозируемыми ценами.
- •Лекция 19. Производственные функции и их характеристики.
- •19.1. Производственные функции и их основные характеристики.
- •19.2. Оптимальное распределение ресурсов.
- •19.3. Максимизация прибыли производства продукции.
- •19.4. Модели поведения фирмы в условиях совершенной и несовершенной конкуренции.
- •Рекомендуемая литература.
13.4. Линейные дифференциальные уравнения первого порядка.
Определение.
Дифференциальное уравнение вида
,
где
,
,
- известные
непрерывные на (а;в)
функции, называется линейным
дифференциальным уравнением первого
порядка.
Это уравнение
можно привести к виду (2)
делением на
,
где
.
Это уравнение линейно, так как y
и
в первой степени. Если
,
то линейное уравнение называется
однородным.
Рассмотрим способы решения уравнения (2).
Умножим обе части
уравнения (2) на
.
Получим
.
Найдем производную функции
,
то есть
=
.
Проинтегрируем
обе части последнего равенства:
- общее решение
уравнения (2).
Рассмотрим метод вариации произвольной постоянной на конкретном примере.
Пример.
Решить уравнение
.
Составим
соответствующее однородное уравнение:
.
Заменим
и разделим переменные
.
Решение однородного уравнения:
,
то есть
.
Где с-
постоянная. Общее решение исходного
неоднородного уравнения будем искать
в виде
,
где
-
неизвестная
функция. Найдем
или
.
Подставим выражения для y и в исходное уравнение, тогда
Следует отметить,
что некоторые нелинейные уравнения
приводятся к линейным соответствующими
заменами неизвестных функций
.
К таковым относится уравнение Бернулли:
,
где p
и g
- непрерывные функции,
.
Для его решения вводят новую функцию
и получают линейное дифференциальное
неоднородное уравнение относительно
функции
:
(2).
Пример.
Если
,
то, согласно (2), имеем
.
13.5. Однородные дифференциальные уравнения первого порядка.
Для рассмотрения однородных дифференциальных уравнений первого порядка введем понятие однородных функций.
Определение.
Функция
называется
однородной n-го
измерения по своим переменным х
и у,
если она удовлетворяет равенству
.
Замечания:
1) Однородная
функция нулевого измерения фактически
зависит от отношения
,
так как, если в соотношении
считать
,
то
.
2) Отношение двух однородных функций одного и того же измерения
является однородной функцией нулевого измерения.
Пусть
,
где
и
однородные функции n-го
измерения, то есть
,
тогда
.
Определение.
Однородным дифференциальным уравнением
первого порядка называется уравнение
вида
(3), правая часть которого является
однородной функцией нулевого измерения,
то есть
.
Для решения
однородного уравнения используется
подстановка
,
где
- неизвестная функция и
=
,
или
.
Подставим выражения у
и
в уравнение
,
получим (*)
-
уравнение с разделяющимися переменными.
Так как
,
то
и
=
- уравнение с разделенными переменными.
Интегрируя последнее уравнение получим
- общий интеграл уравнения (*).
После нахождения
необходимо вернуться к функции
и найти общий интеграл уравнения (3).
Замечания.
1. Уравнение является однородным, если правая часть:
1) зависит фактически
от отношения
;
2) является отношением двух однородных функций одного измерения.
2. Уравнение вида
является однородным, если P(x)
и Q(y)
- однородные функции одного измерения.
Пример.
Решить уравнение
.
Решение.
.
Так как
,
то
.
Так как
,
то
,
=
,
,
.
Так как
,
то
- общее решение уравнения.