
- •Часть 2
- •Содержание
- •Лекция 1. Дифференциальное исчисление функции одной переменной.
- •1.1. Определение производной. Механический, геометрический, экономический смысл производной.
- •1.2. Касательная и нормаль к графику функции.
- •1.3. Дифференцируемость и непрерывность.
- •1.1. Определение производной. Механический, геометрический, экономический смысл производной.
- •1.2. Касательная и нормаль к графику функции.
- •1.3. Дифференцируемость и непрерывность.
- •Лекция 2. Правила дифференцирования.
- •2.1. Правила дифференцирования суммы, произведения и частного двух функций
- •2.2. Производные обратной и сложной функций
- •2.3. Производные элементарных функций
- •2.1. Правила дифференцирования суммы, произведения и частного двух функций.
- •2.2. Производные обратной и сложной функций.
- •2.3. Производные элементарных функций.
- •Лекция 3. Дифференциал функции.
- •3.1. Условие дифференцируемости функции в точке.
- •3.2.Определение дифференциала, геометрический смысл и правила вычисления дифференциала. Использование дифференциала в приближенных вычислениях.
- •3.3. Производные и дифференциалы высших порядков.
- •3.1. Условие дифференцируемости функции в точке.
- •3.2. Определение дифференциала, геометрический смысл и правила вычисления дифференциала. Использование дифференциала в приближенных вычислениях.
- •3.3. Производные и дифференциалы высших порядков.
- •Лекция 4. Основные теоремы дифференциального исчисления.
- •4.1. Теорема Ферма.
- •4.2. Теорема Ролля.
- •4.3. Теорема Лагранжа.
- •4.4. Теорема Коши.
- •4.5. Правило Лопиталя.
- •4.6. Формула Тейлора.
- •Лекция 5. Применение производных к исследованию функций.
- •5.1. Условие монотонности функции. Определение максимума и минимума функции в точке.
- •5.2. Необходимое условие существования экстремума функции одной переменной.
- •5.3. Достаточное условие существования экстремума функции одной переменной.
- •5.4. Наибольшее и наименьшее значения функции на отрезке.
- •5.5. Определение выпуклости и вогнутости графика функции. Достаточное условие выпуклости и вогнутости графика. Необходимое и достаточное условие существования точки перегиба.
- •5.6. Асимптоты графика функции.
- •Лекция 6. Функции многих переменных.
- •6.1. Определение функции двух переменных, область определения функции, график функции.
- •6.2. Определения предела и непрерывности функции двух переменных. Свойства непрерывных функций.
- •6.3. Частные производные.
- •6.1. Определение функции двух переменных, область определения функции, график функции.
- •6.2. Определения предела и непрерывности функции двух переменных. Свойства непрерывных функций.
- •6.3. Частные производные.
- •Лекция 7. Дифференцируемость функции двух переменных.
- •7.1. Определение дифференцируемости функции двух переменных. Определение полного дифференциала. Приближенные вычисления с помощью полного дифференциала.
- •7.2. Частные производные и дифференциалы высших порядков. Теорема о равенстве смешанных частных производных.
- •7.3. Производная функции по направлению.
- •7.4. Градиент функции.
- •7.5. Экстремумы функции двух переменных. Необходимое и достаточное условия существования экстремумов.
- •Лекция 8. Метод наименьших квадратов.
- •8.1. Метод наименьших квадратов
- •8.2.Применение метода наименьших квадратов (случай линейной зависимости).
- •8.3. Использование метода наименьших квадратов на фондовой бирже.
- •8.1. Метод наименьших квадратов.
- •8.2. Применение метода наименьших квадратов (случай линейной зависимости).
- •8.3. Использование метода наименьших квадратов на фондовой бирже.
- •Лекция 9. Интегральное исчисление функции одной переменной.
- •9.1.Определение первообразной функции. Теорема о разности первообразных.
- •9.2. Определение неопределенного интеграла и его основные свойства. Таблица неопределенных интегралов элементарных функций.
- •9.3. Основные методы интегрирования функций.
- •9.1. Определение первообразной функции. Теорема о разности первообразных.
- •9.2. Определение неопределенного интеграла и его основные свойства.
- •9.3. Основные методы интегрирования функций.
- •Лекция 10. Интегрирование некоторых классов функций.
- •10.1. Интегрирование простейших рациональных дробей.
- •10.2. Интегрирование рациональных дробей методом разложения на простейшие дроби.
- •10.3. Интегрирование некоторых тригонометрических функций.
- •10.4. Интегрирование некоторых иррациональных выражений. Некоторые тригонометрические подстановки.
- •Лекция 11. Определенный интеграл.
- •11.1. Определение определенного интеграла. Геометрический смысл определенного интеграла. Интегрируемость функций.
- •11.2. Свойства определенного интеграла.
- •11.3. Теорема о среднем значении определенного интеграла.
- •11.1. Определение определенного интеграла. Геометрический смысл определенного интеграла. Интегрируемость функций.
- •11.2. Свойства определенного интеграла.
- •11.3. Теорема о среднем значении определенного интеграла.
- •Лекция 12. Основная формула интегрального исчисления.
- •12.1. Определенный интеграл с переменным верхним пределом интегрирования и его свойства.
- •12.2. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
- •12.3. Методы интегрирования определенного интеграла.
- •12.4. Геометрические приложения определенного интеграла.
- •12.5. Несобственные интегралы.
- •Лекция 13. Дифференциальные уравнения первого порядка.
- •13.1. Определение дифференциального уравнения. Основные понятия.
- •13.2. Дифференциальные уравнения первого порядка. Основные понятия. Теорема существования и единственности решения.
- •13.3. Дифференциальные уравнения первого порядка с разделяющимися переменными.
- •13.4. Линейные дифференциальные уравнения первого порядка.
- •13.5. Однородные дифференциальные уравнения первого порядка.
- •Лекция 14. Дифференциальные уравнения второго порядка.
- •14.1. Определение дифференциальных уравнений второго порядка. Основные понятия.
- •14.2. Линейные дифференциальные уравнения второго порядка. Фундаментальная система решений (фср). Теоремы об общем решении.
- •14.3. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- •14.4. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами их частные решения в зависимости от вида правой части. Метод вариации произвольных постоянных.
- •Лекция 15. Числовые ряды.
- •15.1. Определение числового ряда. Сходимость рядов, свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- •15.2. Ряды с положительными членами. Достаточные признаки сходимости положительных рядов (принцип сравнения, радикальный признак Коши, признак Даламбера). Интегральный признак Коши-Маклорена.
- •15.3. Определение знакопеременного ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •15.1. Определение числового ряда. Сходимость рядов, свойства сходящихся рядов. Необходимый признак сходимости числового ряда.
- •15.2. Ряды с положительными членами. Достаточные признаки сходимости положительных рядов (принцип сравнения, радикальный признак Коши, признак Даламбера). Интегральный признак Коши-Маклорена.
- •15.3. Определение знакопеременного ряда. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •Лекция 16. Степенные ряды. Функциональные ряды
- •16.1. Определение степенного ряда.
- •16.2. Теорема Абеля. Радиус сходимости степенного ряда. Дифференцирование и интегрирование степенных рядов.
- •16.3. Определение ряда Тейлора. Ряд Маклорена.
- •16.4. Разложение функции в степенной ряд. Необходимое и достаточное условие разложения функции в степенной ряд. Достаточное условие разложения функции в степенной ряд.
- •16.5. Разложение элементарных функций в степенные ряды.
- •Раздел VIII.
- •Лекция 17. Модели межотраслевого баланса.
- •17.1. Статическая модель межотраслевого баланса – модель Леонтьева.
- •17.2. Динамическая модель межотраслевого баланса.
- •17.3. Линейная модель торговли.
- •17.1. Статическая модель межотраслевого баланса – модель Леонтьева.
- •17.2. Динамическая модель межотраслевого баланса.
- •17.3. Линейная модель торговли.
- •Лекция 18. Модели общего экономического равновесия.
- •18.1. Простейшая модель экономического равновесия.
- •18.2. Паутинообразная модель
- •18.3. Модель Эванса.
- •18.4. Модель Эрроу – Гурвица.
- •18.5. Модель рынка с прогнозируемыми ценами.
- •Лекция 19. Производственные функции и их характеристики.
- •19.1. Производственные функции и их основные характеристики.
- •19.2. Оптимальное распределение ресурсов.
- •19.3. Максимизация прибыли производства продукции.
- •19.4. Модели поведения фирмы в условиях совершенной и несовершенной конкуренции.
- •Рекомендуемая литература.
11.2. Свойства определенного интеграла.
1)
2)
,
k=const
3)
4)
,
если
-
свойство аддитивности интеграла по
мере
5) Интеграл от
неотрицательной функции на [a;b]
- неотрицательное число, то есть: если
на [a;b],
то
-
свойство знакопостоянства.
6
)
Если
,
то
.
7)
при a<b.
8)
.
9)
11.3. Теорема о среднем значении определенного интеграла.
Рассмотрим функцию интегрируемую на [a;b].
Теорема 1.
Пусть функция
на [a;b]
удовлетворяет условию
,
тогда
.
Доказательство.
Если
,
то по свойству 6
.
Используя свойство 2 и 9 соответственно
получим, что
и
.
Теорема 2.
Пусть функция
интегрируема на [a;b]
и на этом отрезке выполняется неравенство
,
тогда существует число
,
для которого
.
Доказательство.
Из теоремы 1 следует
,
получим
.
В качестве
возьмем число
,
тогда
.
Следствие из теоремы 2.
Е
сли
непрерывна на [a;b],
то существует точка
,
для которой выполняется равенство
,
то есть площадь криволинейной трапеции
равна площади прямоугольника со сторонами
и
.
Лекция 12. Основная формула интегрального исчисления.
12.1. Определенный интеграл с переменным верхним пределом интегрирования и его свойства.
12.2. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
12.3. Методы интегрирования определенного интеграла
12.4. Геометрическое приложение определенного интеграла
12.5. Несобственный интеграл
12.1. Определенный интеграл с переменным верхним пределом интегрирования и его свойства.
Если функция
интегрируема на
,
то она интегрируема на любом
Если функция
интегрируема на
,
то она интегрируема на любом меньшем
отрезке и следовательно для любого
.
Чтобы не смешивать обозначения верхнего
предела и переменной интегрирования,
будем записывать его в виде
.
Определение. Для функции , интегрируемой на , интеграл вида
,
где
,
называется интегралом с переменным
верхним пределом
интегрирования.
Рассмотрим функцию
.
Теорема 1.
Если
интегрируема на
,
то
непрерывна на
.
Теорема 2.
Если
непрерывна на
,
то
дифференцируема на
и ее производная
(иначе говоря: производная интеграла с
переменным верхним пределом равна
значению подынтегральной функции на
верхнем пределе интегрирования).
Доказательство.
так как при
вследствие непрерывности функции
на
по условию.
Следствие. Определенный интеграл с переменным верхним пределом функции является первообразной для функции .
12.2. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
Теорема. Пусть непрерывна на и какая-либо первообразная
для
,
тогда
.
Доказательство.
Так как
- первообразная
на
по условию и
первообразная для
на
по теореме 1, то
.
Будем поочередно считать
и
,
тогда
,
т.е.
- формула Ньютона-Лейбница.
Отметим еще два варианта формулы:
,
.
Пример.
.
12.3. Методы интегрирования определенного интеграла.
а) Метод непосредственного интегрирования определенного интеграла основан на применении таблицы интегралов, свойств интеграла, формулы Ньютона-Лейбница и элементарных преобразований подынтегральной функции.
Пример.
б) Метод интегрирования по частям.
Теорема.
Пусть
и
имеют непрерывные производные на
,
тогда
в) Метод подстановки (замена переменной)
Теорема.
Пусть
непрерывна на
,
а функция
имеет
непрерывную
производную на
и при
значения
,
причем
,
,
тогда
.
Пример.