
- •2.Вероятностный характер медико-биологических процессов. Элементы теории вероятностей.
- •3.Вероятность случайного события. Закон сложения вероятностей.
- •4.Вероятность случайного события. Закон умножения вероятностей.
- •5.Принципы вероятностных подходов к задачам диагностики и прогнозирования заболеваний.
- •6.Элементы математической статистики. Случайная величина.
- •7. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение.
- •8.Примеры различных законов распределения. Нормальный закон распределения
- •9.Генеральная совокупность и выборка. Гистограмма.
- •10. Оценка параметров нормального распределения по опытным данным.
- •11.Доверительный интервал. Интервальная оценка истинного значения измеряемой величины.
- •12.Применение распределения Стьюдента для определения доверительных интервалов. Методы обработки медицинских данных.
- •14. Определение модуля упругости костной ткани.
- •16.Снятие спектральной характеристики уха на пороге слышимости.
- •17.Исследование действия ультразвука на вещество
- •18. «Определение поверхностного натяжения жидкостей методом измерения максимального давления в пузырке воздуха»
- •21.«Градуировка термопары в качестве термометра»
- •23. «Определение параметров импульсных сигналов, используемых для электростимуляции»
- •25.Определение частотной и амплитудной характеристик, полосы частот, динамического диапазона усилителя.
- •26.Определение концентрации оптически активных веществ с помощью поляриметра.
- •27. Исследование зависимости показателя преломления раствора от его концентрации. Определение концентрации раствора с помощью рефрактометра.
- •28. Определение предела увеличения разрешающей способности объектива микроскопа.
- •30. Определение концентрации и молярной экстинкции вещества методом колориметрии, фотометрии.
- •31. Определение собственной люминесценции белка.
- •32.Дозиметрия ионизирующего излучения. Определить интегальную дозу накопления радионуклидов для каждого студента.
- •33. Определение полного и статического давления крови методом н.С. Короткова.
- •34.Градуировка, спектроскопы и определение спектров поглощения вещества по градуировочной кривой.
- •35.Упругие, вязкие и вязкоупругие среды, их механические характеристики и модели.
- •36.Механические свойства костной ткани, мышц, сухожилий, сосудов.
- •44.Эффект Доплера и его применение для неинвазивного измерения скорости кровотока
- •46.Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука. Единицы их измерения - децибелы и фоны.
- •47.Аудиометрия. Фонокардиография.
- •48.Поглощение и отражение акустических волн. Акустический импеданс.
- •49.Ультразвук. Методы получения и регистрации. Действие ультразвука на вещество.
- •50.Биофизические основы действия ультразвука на клетки и ткани организма. Хирургическое и терапевтическое применение ультразвука.
- •51. Ультразвуковая диагностика. Принципы ультразвуковой томографии.
- •52.Инфразвук. Биофизические основы действия инфразвука на биологические объекты.
- •54. Капиллярные явления, их значение в биологических системах. Газовая эмболия.
- •55. Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.
- •57.Течение вязкой жидкости. Формула Пуазейля.
- •58.Гидравлическое сопротивление. Распределение давления и скорости крови в ссудистой системе.
- •61. Методы измерения давления крови.
- •2.Метод падающего шарика (метод Стокса).
- •66.Устройство вискозиметра Оствальда. Определение с его помощью вязкости исследуемой жидкости.
- •72. Механизм генерации потенциала действия. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- •73.Общие характеристики датчиков температуры.Зависимость сопротивления металлов и полупроводников от температуры.
- •74.Контактная разность потенциалов. Градуировка термопары, термистора и проволочного терморезистора.
- •75.Усилители. Коэффициент усиления усилителя. Требования к усилителям. Классификация усилителей.
- •77.Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя. Предупреждение частотных искажений.
- •79. Повторители. Назначение и типы повторителей.
- •80.Основные характеристики электрического поля. Электрический диполь. Поле диполя. Диполь в электрическом поле.
- •82. Физические основы электрографии тканей и органов. Электрокардиография. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена.
- •83.Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.
- •84.Электропроводность биологических тканей и жидкостей для постоянного тока.
- •85.Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •86. Переменный ток. Виды сопротивления. Импеданс
- •89. Основные хар-ки магнитного поля
- •90. Воздействие переменным магнитным полем
- •3) Минимальное количество противопоказаний (поздние сроки беременности, онкологические больные)
- •92.Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона.
- •94.Аппаратура для электростимуляции. Примеры использования электростимуляции в клинике. Электростимуляция сердца и ее виды.
- •95.Воздействие высокочастотных токов и полей на организм. Первичные механизмы воздействия. Тепловые и нетепловые эффекты
- •96.Высокочастотная мед аппаратура.Электрохирургия.Местная дарсонвализация, индуктотермия, увч-, мкв- , дцв- и квч-терапия.
- •97.Явление рефракции.Законы отражения и преломления.Молекулярн рефракция в-ва.Удельная рефракуия в-ва.
- •98.Устройство рефрактометра. Определение концентрации растворов с помощью рефрактометра.
- •99.Явление полного внутреннего отражения света, принципы волоконной оптики, устройство современных эндоскопов.
- •100.Ход дучей в микроскопе.Увеличение и предел разрешения оптических микроскопров.
- •101.Формула Аббе.Значение апертурного угла. Ультрафиолетовый микроскоп. Иммерсионные системы. Полезное увеличение. Специальные приемы микроскопии.
- •102. Основы электронной микроскопии. Длина волны де Бройля. Предел разрешения электронного микроскопа.
- •111.Интерференционные и дифракционные приборы. Принцип рентгеноструктурного анализа.
- •112. Понятие о голографии.
- •114.Поляриметрия и спектрополяриметрия. Поляризационные приборы.
- •115.Излучение и поглощение энергии атомами. Структура энергетических уровней атомов. Оптические спектры атома водорода.
- •116.Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •117.Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •118.Спектроскопы, спектрографы, монохроматоры, спектрофотометры и их применение в медицине.
- •129.Тормозное рентгеновское излучение.
- •131. Взаимодействие рентгеновского излучения с веществом.
- •132.Физические принципы рентгенодиагностики и рентгенотерапии.Понятие о рентгеновской компьютерной томографии.
- •133. Основные характеристики ядер атомов.
- •137.Особенности взаимодействия с веществом альфа-, бета-, гамма-излучений и нейтронов.
- •138.Физические принципы защиты от ионизирующих излучений.
- •140.Дозиметрия ионизирующего излучения.
- •143.Методы регистрации ионизирующих излучений, дозиметрические и радиометрические приборы. Естественный радиационный фон. Техногенный фон.
- •144. Цели, задачи и структура биологической физики.
23. «Определение параметров импульсных сигналов, используемых для электростимуляции»
Цель: Используя осциллограф С8-19, источник питания постоянного тока Б5-45, дифференцирующие и интегрирующие цепи. получить практические навыки определения параметров импульсного сигнала.Ход работы:Включите в сеть осциллограф и источник питания постоянного тока. Установите на источнике питания выходное напряжение 9,5В и ток 50mA. Чувствительность осциллографа установите 2 В/дел, а время развертки – 10mc. Напряжение от источника питания используется для работы мультивибратора.
Определение параметров прямоугольного импульса.Импульс прямоугольной формы необходимо подать на вход осциллографа. Это делают, пользуясь разъемами, минуя дифференцирующую или интегрирующую цепь По осям осциллографа определите амплитуду, длительность и период повторения импульса. Зная эти параметры рассчитайте скважность и коэффициент заполнения.Изменение формы прямоугольного импульса дифференцирующей и интегрирующей цепями.Для изучения работы дифференцирующей цепи необходимо подать на ее вод прямоугольный импульс от мультивибратора, а полученный сигнал с выхода подать на вход осциллографаЗарисуйте сигналы, полученные после прохождения первой и второй дифференцирующей цепей и объясните различие в форме полученных сигналов.
24. «Изучение действия СВЧ поля на вещество» ЦЕЛЬ : Изучить на опыте наличие разного механизма действия высокочастотного поля на биологические проводники(электролиты) диэлектрики (липиды). Понять специфический и неспецифический механизм действия Свч. Исследования электрического поля аппарата УВЧ, СВЧ.Для исследования электрического поля аппарата УВЧ, СВЧ используется миниатюрный линейный резонатор (диполь) Переменные токи, наведенные электрическим полем, создают в диполе стоячую волну с пучностью тока в его середине. Выпрямляемый полупроводниковым диодом П ток диполя регистрируется гальванометром (микроамперметром) Г. Они препятствуют ответвлению в гальванометр высокочастотного тока, свободно пропуская выпрямленный. Показания прибора пропорциональны напряженности поля в месте расположения диполя.Из теории стоячих волн известно, что расстояние между пучностью и узлом составляет четверть длины волны. Стандартной частоте современных аппаратов УВЧ, т. е. 40, 68 МГц, соответствует длина волны А,—7,37 м. Для исследования нагревания различных веществ в поле СВЧ в качестве диэлектрика берут дважды дистиллированную воду и в качестве электролита — физиологический раствор, их удельная теплоемкость считается одинаковой .В настоящее время развиваются методы воздействия на организм электрическим полем УВЧ в импульсном режиме, называемые импульсной УВЧ-терапией. При этом методе поле образуется и действует на ткани импульсами длительностью до нескольких микросекунд, разделенных паузами, в сотни раз превышающими длительность импульса. .Ход работы 1.Исследование нагревания токами СВЧ электролита и диэлектрика. Внутри печи СВЧ помещают поочередно два одинаковых стеклянных или плексигласовых сосуда с одинаковыми объемами (объем не менее 300 мл) физиологического раствора или другой жидкостью. В каждый из сосудов помещают термометр. Отметив начальную температуру жидкостей, поставить сосуд без пробки в печь, закрыть дверцу, включить печь, нажатием кнопку экспрес приготовление устанавливают время воздействия СВЧ поля (15 с) на исследуемую жидкость. Нажать кнопку Старт. произойдет цикл воздействия СВЧ поля. После отключения таймера,нажимают кнопку Сброс открывают дверку печи и аккуратно достают сосуд вставляют в него пробку и несколько раз переворачивают сосуд и замеряют его температуру.2.график3.вывод