Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
12345.doc
Скачиваний:
37
Добавлен:
26.09.2019
Размер:
1.4 Mб
Скачать

129.Тормозное рентгеновское излучение.

Для объяснения свойств теплового излучения пришлось ввести представление об испускании электромагнитного излучения порциями (квантами). Квантовая природа излучения подтверждается также существованием коротковолновой границы тормозного рентгеновского спектра  Рентгеновское излучение возникает при бомбардировке твердых мишеней быстрыми электронами (рис. 2.6) Здесь анод выполнен из W, Mo, Cu, Pt – тяжелых тугоплавких или с высоким коэффициентом теплопроводности металлов.Только 1–3 % энергии электронов идет на излучение, остальная часть выделяется на аноде в виде тепла, поэтому аноды охлаждают водой.Попав в вещество анода, электроны испытывают сильное торможение и становятся источником электромагнитных волн (рентгеновских лучей). >Заметное излучение наблюдается лишь при резком торможении быстрых электронов, начиная с U ~ 50 кВ, при этом  (с – скорость света). В индукционных ускорителях электронов – бетатронах, электроны приобретают энергию до 50 МэВ,  = 0,99995 с. Направив такие электроны на твердую мишень, получим рентгеновское излучение с малой длиной волны. Это излучение обладает большой проникающей способностью Согласно классической электродинамике при торможении электрона должны возникать излучения всех длин волн от нуля до бесконечности. Длина волны, на которую приходится максимум мощности излучения, должна уменьшиться по мере увеличения скорости электронов, что в основном подтверждается на опыте теории: нулевые распределения мощности не идут к началу координат, а обрываются при конечных значениях – это и есть коротковолновая граница рентгеновского спектра. Экспериментально установлено, что  . Существование коротковолновой границы непосредственно вытекает из квантовой природы излучения. Действительно, если излучение возникает за счёт энергии, теряемой электроном при торможении, то энергия кванта  не может превысить энергию электрона eU, т.е.  , отсюда  или     В данном эксперименте можно определить постоянную Планка h. Из всех методов определения постоянной Планка метод, основанный на измерении коротковолновой границы тормозного рентгеновского спектра, является самым точным.

130.Характеристическое рентгеновское излучение. Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими.Состояние атома с вакансией во внутренней оболочке неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом испускает избыток энергии в виде фотона характеристического излучения:      Все переходы на k-оболочку образуют K-серию, соответственно, на l- и m-оболочки – L- и M-серии (рис. 2.8).Английский физик Генри Мозли в 1913 году установил закон, названный его именем, связывающий частоты линий рентгеновского спектра  с атомным номером испускающего их элемента Z: Закон Мозли позволил по измерению длин волн λ рентгеновских лучей точно установить атомный номер элемента. Он сыграл большую роль при размещение элементов в таблице Менделеева.