
- •2.Вероятностный характер медико-биологических процессов. Элементы теории вероятностей.
- •3.Вероятность случайного события. Закон сложения вероятностей.
- •4.Вероятность случайного события. Закон умножения вероятностей.
- •5.Принципы вероятностных подходов к задачам диагностики и прогнозирования заболеваний.
- •6.Элементы математической статистики. Случайная величина.
- •7. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение.
- •8.Примеры различных законов распределения. Нормальный закон распределения
- •9.Генеральная совокупность и выборка. Гистограмма.
- •10. Оценка параметров нормального распределения по опытным данным.
- •11.Доверительный интервал. Интервальная оценка истинного значения измеряемой величины.
- •12.Применение распределения Стьюдента для определения доверительных интервалов. Методы обработки медицинских данных.
- •14. Определение модуля упругости костной ткани.
- •16.Снятие спектральной характеристики уха на пороге слышимости.
- •17.Исследование действия ультразвука на вещество
- •18. «Определение поверхностного натяжения жидкостей методом измерения максимального давления в пузырке воздуха»
- •21.«Градуировка термопары в качестве термометра»
- •23. «Определение параметров импульсных сигналов, используемых для электростимуляции»
- •25.Определение частотной и амплитудной характеристик, полосы частот, динамического диапазона усилителя.
- •26.Определение концентрации оптически активных веществ с помощью поляриметра.
- •27. Исследование зависимости показателя преломления раствора от его концентрации. Определение концентрации раствора с помощью рефрактометра.
- •28. Определение предела увеличения разрешающей способности объектива микроскопа.
- •30. Определение концентрации и молярной экстинкции вещества методом колориметрии, фотометрии.
- •31. Определение собственной люминесценции белка.
- •32.Дозиметрия ионизирующего излучения. Определить интегальную дозу накопления радионуклидов для каждого студента.
- •33. Определение полного и статического давления крови методом н.С. Короткова.
- •34.Градуировка, спектроскопы и определение спектров поглощения вещества по градуировочной кривой.
- •35.Упругие, вязкие и вязкоупругие среды, их механические характеристики и модели.
- •36.Механические свойства костной ткани, мышц, сухожилий, сосудов.
- •44.Эффект Доплера и его применение для неинвазивного измерения скорости кровотока
- •46.Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука. Единицы их измерения - децибелы и фоны.
- •47.Аудиометрия. Фонокардиография.
- •48.Поглощение и отражение акустических волн. Акустический импеданс.
- •49.Ультразвук. Методы получения и регистрации. Действие ультразвука на вещество.
- •50.Биофизические основы действия ультразвука на клетки и ткани организма. Хирургическое и терапевтическое применение ультразвука.
- •51. Ультразвуковая диагностика. Принципы ультразвуковой томографии.
- •52.Инфразвук. Биофизические основы действия инфразвука на биологические объекты.
- •54. Капиллярные явления, их значение в биологических системах. Газовая эмболия.
- •55. Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.
- •57.Течение вязкой жидкости. Формула Пуазейля.
- •58.Гидравлическое сопротивление. Распределение давления и скорости крови в ссудистой системе.
- •61. Методы измерения давления крови.
- •2.Метод падающего шарика (метод Стокса).
- •66.Устройство вискозиметра Оствальда. Определение с его помощью вязкости исследуемой жидкости.
- •72. Механизм генерации потенциала действия. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- •73.Общие характеристики датчиков температуры.Зависимость сопротивления металлов и полупроводников от температуры.
- •74.Контактная разность потенциалов. Градуировка термопары, термистора и проволочного терморезистора.
- •75.Усилители. Коэффициент усиления усилителя. Требования к усилителям. Классификация усилителей.
- •77.Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя. Предупреждение частотных искажений.
- •79. Повторители. Назначение и типы повторителей.
- •80.Основные характеристики электрического поля. Электрический диполь. Поле диполя. Диполь в электрическом поле.
- •82. Физические основы электрографии тканей и органов. Электрокардиография. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена.
- •83.Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.
- •84.Электропроводность биологических тканей и жидкостей для постоянного тока.
- •85.Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •86. Переменный ток. Виды сопротивления. Импеданс
- •89. Основные хар-ки магнитного поля
- •90. Воздействие переменным магнитным полем
- •3) Минимальное количество противопоказаний (поздние сроки беременности, онкологические больные)
- •92.Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона.
- •94.Аппаратура для электростимуляции. Примеры использования электростимуляции в клинике. Электростимуляция сердца и ее виды.
- •95.Воздействие высокочастотных токов и полей на организм. Первичные механизмы воздействия. Тепловые и нетепловые эффекты
- •96.Высокочастотная мед аппаратура.Электрохирургия.Местная дарсонвализация, индуктотермия, увч-, мкв- , дцв- и квч-терапия.
- •97.Явление рефракции.Законы отражения и преломления.Молекулярн рефракция в-ва.Удельная рефракуия в-ва.
- •98.Устройство рефрактометра. Определение концентрации растворов с помощью рефрактометра.
- •99.Явление полного внутреннего отражения света, принципы волоконной оптики, устройство современных эндоскопов.
- •100.Ход дучей в микроскопе.Увеличение и предел разрешения оптических микроскопров.
- •101.Формула Аббе.Значение апертурного угла. Ультрафиолетовый микроскоп. Иммерсионные системы. Полезное увеличение. Специальные приемы микроскопии.
- •102. Основы электронной микроскопии. Длина волны де Бройля. Предел разрешения электронного микроскопа.
- •111.Интерференционные и дифракционные приборы. Принцип рентгеноструктурного анализа.
- •112. Понятие о голографии.
- •114.Поляриметрия и спектрополяриметрия. Поляризационные приборы.
- •115.Излучение и поглощение энергии атомами. Структура энергетических уровней атомов. Оптические спектры атома водорода.
- •116.Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •117.Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •118.Спектроскопы, спектрографы, монохроматоры, спектрофотометры и их применение в медицине.
- •129.Тормозное рентгеновское излучение.
- •131. Взаимодействие рентгеновского излучения с веществом.
- •132.Физические принципы рентгенодиагностики и рентгенотерапии.Понятие о рентгеновской компьютерной томографии.
- •133. Основные характеристики ядер атомов.
- •137.Особенности взаимодействия с веществом альфа-, бета-, гамма-излучений и нейтронов.
- •138.Физические принципы защиты от ионизирующих излучений.
- •140.Дозиметрия ионизирующего излучения.
- •143.Методы регистрации ионизирующих излучений, дозиметрические и радиометрические приборы. Естественный радиационный фон. Техногенный фон.
- •144. Цели, задачи и структура биологической физики.
21.«Градуировка термопары в качестве термометра»
Цель работы: Изучить термоэлектрические явления, и их использование в датчиках температуры. Изучение электрических датчиков температуры применение в медицине и технике .
Если спаять два куска проволоки из разных металлов, например меди и железа, константана и меди и др., и замкнуть цепь, то в случае, если спаи будут иметь различные температуры, в цепи возникнет ток. Наличие тока (термотока) в цепи объясняется возникновением электродвижущей силы, которая в этом случае называется термоэлектродвижущей силой (термо-ЭДС). Ее величина определяется по формуле
,где
является постоянной величиной для определенного спая двух металлов с концентрациями электронов n01 и n02, k — постоянная Больцмана; q —заряд
электрона.
Ход:1. Градуировка термоэлемента. Собирают установку по схеме. Сопротивление магазина устанавливают в нулевое положение. Нагреваемый спай термоэлемента погружают в сосуд со льдом и ставят его на плитку. Холодный спай помещают в сосуд Дьюара, заполненный водой со льдом. При этом стрелка гальванометра Г устанавливается в нулевом положении. Нагревая спай, через каждые 5° фиксируют температуры и соответствующие им отклонения стрелки гальванометра. Отсчет температур и отклонений стрелки гальванометра продолжают до 50°. По значениям экспериментально снятых температур и отклонениям стрелки гальванометра вычерчивают график зависимости Та от N. 2.Определение чувствительности и величины термо-ЭДС термоэлемента. При некоторой разности температур Та—Тb отмечают отклонение n0 стрелки гальванометра. Затем при той же разности температур поворотом декадного переключателя магазина устанавливают ка отмечают максимальное отклонение п стрелки гальванометра. Эти измерения следует проводить быстро, чтобы не изменилась разность температур Та—Тb По известным с, п0, п, Rм, Та и Тb по формуле (10) находят чувствительность , а затем Е.кое-либо сопротивление 3.Измерение температуры тела человека или какой-либо среды. Нагреваемый спай термоэлемента прикладывают к какой-либо точке тела человека, например шеи, руки, щеки, или погружают внутрь раствора и отмечают отклонение стрелки гальванометра. По отклонению стрелки гальванометра, пользуясь графиком, находят температуры исследуемых объектов.
22. Определение сопротивления ткани постоянному току. Определение частотной зависимости полного сопротивления биологической ткани».Цельработы: Используя аппарат для гальванизации и измерительные приборы определить сопротивление живой ткани постоянному току. Используя генератор вырабатывающий переменный ток разной частоты и подавая его через аттенюатор и измерительные приборы на электроды , измерим силу тока и напряжение на живой ткани. Определим импенданс и построим график зависимости полного сопротивления от частоты переменного тока. Найти активное сопротивление живой ткани и тангенс диэлектрических потерь. Ход:1.Определение сопротивление живых тканей человека постоянному току.Постоянный ток через миллиамперметр и вольтметр подается на электроды. Для лучшего контакта на электроды надеты салфетки, смоченные водой. Перед включением гальванизатора поверните регулятор напряжения против часовой стрелки до упора. Включите гальванизатор, нажав кнопку “сеть”.Положите два пальца одной руки на электроды и до конца опыта не снимайте их. Вращая регулятор напряжения гальванизатора установите выходное напряжение по вольтметру 20В. Определите силу тока по миллиамперметру. Измерьте силу тока для напряжений 25В и 30В. После измерений поверните регулятор напряжения против часовой стрелки до упора и только тогда снимите пальцы с электродов. Рассчитайте сопротивления тканей для этих напряжений. Результаты занесите в таблицу. При расчете сопротивления силу тока переведите в “Амперы”: 1 mA = 10-3 A. 2.Определение сопротивление живых тканей человека переменному току.Ткани организма обладают не только омическим (активным), но и емкостным (реактивным) сопротивлением. При прохождении переменного тока мы имеем дело с полным сопротивлением – импедансом. Импеданс зависит от частоты пропускаемого переменного тока. Поэтому определять импеданс на какой-либо одной частоте неинформативно. Определим импеданс на различных частотахПеременный ток нужной частоты вырабатывается генератором и подается через аттенюатор и измерительные приборы на электроды. Определите по графику активное сопротивление тканей Rm. Рассчитайте электрическую емкость тканей организма.