
- •2.Вероятностный характер медико-биологических процессов. Элементы теории вероятностей.
- •3.Вероятность случайного события. Закон сложения вероятностей.
- •4.Вероятность случайного события. Закон умножения вероятностей.
- •5.Принципы вероятностных подходов к задачам диагностики и прогнозирования заболеваний.
- •6.Элементы математической статистики. Случайная величина.
- •7. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение.
- •8.Примеры различных законов распределения. Нормальный закон распределения
- •9.Генеральная совокупность и выборка. Гистограмма.
- •10. Оценка параметров нормального распределения по опытным данным.
- •11.Доверительный интервал. Интервальная оценка истинного значения измеряемой величины.
- •12.Применение распределения Стьюдента для определения доверительных интервалов. Методы обработки медицинских данных.
- •14. Определение модуля упругости костной ткани.
- •16.Снятие спектральной характеристики уха на пороге слышимости.
- •17.Исследование действия ультразвука на вещество
- •18. «Определение поверхностного натяжения жидкостей методом измерения максимального давления в пузырке воздуха»
- •21.«Градуировка термопары в качестве термометра»
- •23. «Определение параметров импульсных сигналов, используемых для электростимуляции»
- •25.Определение частотной и амплитудной характеристик, полосы частот, динамического диапазона усилителя.
- •26.Определение концентрации оптически активных веществ с помощью поляриметра.
- •27. Исследование зависимости показателя преломления раствора от его концентрации. Определение концентрации раствора с помощью рефрактометра.
- •28. Определение предела увеличения разрешающей способности объектива микроскопа.
- •30. Определение концентрации и молярной экстинкции вещества методом колориметрии, фотометрии.
- •31. Определение собственной люминесценции белка.
- •32.Дозиметрия ионизирующего излучения. Определить интегальную дозу накопления радионуклидов для каждого студента.
- •33. Определение полного и статического давления крови методом н.С. Короткова.
- •34.Градуировка, спектроскопы и определение спектров поглощения вещества по градуировочной кривой.
- •35.Упругие, вязкие и вязкоупругие среды, их механические характеристики и модели.
- •36.Механические свойства костной ткани, мышц, сухожилий, сосудов.
- •44.Эффект Доплера и его применение для неинвазивного измерения скорости кровотока
- •46.Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука. Единицы их измерения - децибелы и фоны.
- •47.Аудиометрия. Фонокардиография.
- •48.Поглощение и отражение акустических волн. Акустический импеданс.
- •49.Ультразвук. Методы получения и регистрации. Действие ультразвука на вещество.
- •50.Биофизические основы действия ультразвука на клетки и ткани организма. Хирургическое и терапевтическое применение ультразвука.
- •51. Ультразвуковая диагностика. Принципы ультразвуковой томографии.
- •52.Инфразвук. Биофизические основы действия инфразвука на биологические объекты.
- •54. Капиллярные явления, их значение в биологических системах. Газовая эмболия.
- •55. Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.
- •57.Течение вязкой жидкости. Формула Пуазейля.
- •58.Гидравлическое сопротивление. Распределение давления и скорости крови в ссудистой системе.
- •61. Методы измерения давления крови.
- •2.Метод падающего шарика (метод Стокса).
- •66.Устройство вискозиметра Оствальда. Определение с его помощью вязкости исследуемой жидкости.
- •72. Механизм генерации потенциала действия. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- •73.Общие характеристики датчиков температуры.Зависимость сопротивления металлов и полупроводников от температуры.
- •74.Контактная разность потенциалов. Градуировка термопары, термистора и проволочного терморезистора.
- •75.Усилители. Коэффициент усиления усилителя. Требования к усилителям. Классификация усилителей.
- •77.Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя. Предупреждение частотных искажений.
- •79. Повторители. Назначение и типы повторителей.
- •80.Основные характеристики электрического поля. Электрический диполь. Поле диполя. Диполь в электрическом поле.
- •82. Физические основы электрографии тканей и органов. Электрокардиография. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена.
- •83.Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.
- •84.Электропроводность биологических тканей и жидкостей для постоянного тока.
- •85.Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •86. Переменный ток. Виды сопротивления. Импеданс
- •89. Основные хар-ки магнитного поля
- •90. Воздействие переменным магнитным полем
- •3) Минимальное количество противопоказаний (поздние сроки беременности, онкологические больные)
- •92.Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона.
- •94.Аппаратура для электростимуляции. Примеры использования электростимуляции в клинике. Электростимуляция сердца и ее виды.
- •95.Воздействие высокочастотных токов и полей на организм. Первичные механизмы воздействия. Тепловые и нетепловые эффекты
- •96.Высокочастотная мед аппаратура.Электрохирургия.Местная дарсонвализация, индуктотермия, увч-, мкв- , дцв- и квч-терапия.
- •97.Явление рефракции.Законы отражения и преломления.Молекулярн рефракция в-ва.Удельная рефракуия в-ва.
- •98.Устройство рефрактометра. Определение концентрации растворов с помощью рефрактометра.
- •99.Явление полного внутреннего отражения света, принципы волоконной оптики, устройство современных эндоскопов.
- •100.Ход дучей в микроскопе.Увеличение и предел разрешения оптических микроскопров.
- •101.Формула Аббе.Значение апертурного угла. Ультрафиолетовый микроскоп. Иммерсионные системы. Полезное увеличение. Специальные приемы микроскопии.
- •102. Основы электронной микроскопии. Длина волны де Бройля. Предел разрешения электронного микроскопа.
- •111.Интерференционные и дифракционные приборы. Принцип рентгеноструктурного анализа.
- •112. Понятие о голографии.
- •114.Поляриметрия и спектрополяриметрия. Поляризационные приборы.
- •115.Излучение и поглощение энергии атомами. Структура энергетических уровней атомов. Оптические спектры атома водорода.
- •116.Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •117.Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •118.Спектроскопы, спектрографы, монохроматоры, спектрофотометры и их применение в медицине.
- •129.Тормозное рентгеновское излучение.
- •131. Взаимодействие рентгеновского излучения с веществом.
- •132.Физические принципы рентгенодиагностики и рентгенотерапии.Понятие о рентгеновской компьютерной томографии.
- •133. Основные характеристики ядер атомов.
- •137.Особенности взаимодействия с веществом альфа-, бета-, гамма-излучений и нейтронов.
- •138.Физические принципы защиты от ионизирующих излучений.
- •140.Дозиметрия ионизирующего излучения.
- •143.Методы регистрации ионизирующих излучений, дозиметрические и радиометрические приборы. Естественный радиационный фон. Техногенный фон.
- •144. Цели, задачи и структура биологической физики.
96.Высокочастотная мед аппаратура.Электрохирургия.Местная дарсонвализация, индуктотермия, увч-, мкв- , дцв- и квч-терапия.
К физиотерапевтическим аппаратам высокочастотной терапии относятся аппараты электрохирургии (рассмотрим их ниже), диатермии, местной дарсонвализации, индуктотермии, УВЧ-терапии, микроволновой терапии (также будут рассмотрены ниже).Общая схема аппаратов индуктотермии и УВЧ-терапии приведена на рисунке.В аппарате УВЧ-терапии дискообразные электроды, подводимые к больному, входят в состав контура пациента, называемого терапевтическим контуром. Для безопасности больного терапевтический контур индуктивно связан с контуром генератора, так как индуктивная связь исключает возможность случайного попадания больного под высокое напряжение, которое практически всегда имеется в генераторах колебаний. Терапевтический контур применяют и в других генераторах, используемых для лечения.
Генераторы синусоидальных колебаний с самовозбуждением
Для возбуждения незатухающих электрических колебаний применяют автоколебательные системы (работающие за счет энергии источника постоянного или выпрямленного напряжения), называемые генераторами. Рассмотрим ламповый генератор:Схема генерирует колебания, частота которых равна частоте собственных колебаний контура Lк Cк. Изменять эту частоту можно, меняя параметры контура - C и L. Удобнее Cк. Элементы Rc Cc служат для создания на сетке напряжения смещения в цепях правильного режима работы лампы.Пропускание тока высокой частоты через ткань используют в физиотерапевтических процедурах, называемых диатермией и местной дарсонвализацией.Аппаратура электрохирургии.Имеются генераторы трех видов: ламповые, полупроводниковые и искровые. Форма сигнала:Аппарат электрохирургии высокочастотный.Принцип действия аппарата основан на воздействии токов высокой частоты на мягкие биологические ткани.При протекании тока через мягкие ткани осуществляется их резание и коагуляция кровеносных сосудов.
97.Явление рефракции.Законы отражения и преломления.Молекулярн рефракция в-ва.Удельная рефракуия в-ва.
При взаимодействии световых лучей с веществом луч может испытывать отражение и преломление. Отражение от гладких полированных поверхностей называется правильным или зеркальным. При этом необходимо учитывать, что отражение происходит не от геометрической поверхности раздела сред, а от незначительного по глубине слоя атомов или молекул, прилегающих к этой поверхности, при этом ход лучей определяется двумя основными законами отражения:
Луч падающий, луч отраженный и перпендикуляр, восставленный к границе раздела сред в точке падения, лежат в одной плоскости.
2. Угол падения лучей (i) равен углу отражения (t).
Изменение направления лучей при переходе из одной прозрачной среды в другую называется преломлением, или рефракцией, света. Ход лучей при этом обусловливается двумя основными законами:
1. Луч падающий, луч преломленный и перпендикуляр, восставленный к границе раздела сред в точке падения, лежат в одной плоскости.
2. Отношение синуса угла падения лучей (sin i) к синусу угла преломления (sin r) для данных двух сред есть величина постоянная, называемая показателем преломления n2-1 второй среды относительно первой:
Изменение направления лучей при переходе из одной среды в другую связано с изменением скорости распространения света.
Угол падения,при котором преломленный луч стремится принять значения 90°,называется критическим углом падения.Когда угол падения становится больше,чем критический,приломленный луч исчезает.Т.о,свет не проходит во вторую среду-все лучи отражаются.Такое отражение назыв полным внутренним отражением.
В самом общем виде зависимость некоторой функции – показателя преломления от плотности вещества может быть выражена следующим образом: f(n)=r, где r – коэффициент пропорциональности, называемый удельной рефракцией.
На основании теории о поляризации атомов и молекул веществ (диэлектрика) в электрическом поле можно показать, что f(n) имеет вид
, тогда
м3/кг
Данное уравнение является формульным выражением закона Лоренц-Лоренца.
Можно также доказать, что для данного вещества с молекулярной массой М значение удельной рефракции r прямо пропорционально поляризуемости :
Произведение удельной рефракции на молекулярную массу дает значение молекулярной рефракции R, м3/кмоль:
, или .
Из последнего выражения можно сделать важный вывод: молекулярная рефракция R зависит только от поляризуемости , которая определяется природой вещества, не зависит от температуры, давления, внешних факторов и агрегатного состояния вещества.
Молекулярная рефракция – аддитивная величина атомных рефракций, например:
.
Удельную
рефракцию используют при работе с
растворами. Для раствора А в растворителе
В удельная рефракция равна
,
где rA+B,
rA
и rB
– удельные рефракции раствора,
растворенного вещества А и растворителя
В; х –
весовая доля вещества А в растворе
(определяется концентрацией с
раствора, т.е. такого раствора, в котором
концентрация с
весовых частей вещества приходится на
сто весовых частей раствора). Подставив
вместо удельных рефракций, значения
показателей преломления получим
где nA, nB и nA+B – показатели преломления вещества А , В и раствора; А, В и А+В – соответственно их плотности.