- •2.Вероятностный характер медико-биологических процессов. Элементы теории вероятностей.
- •3.Вероятность случайного события. Закон сложения вероятностей.
- •4.Вероятность случайного события. Закон умножения вероятностей.
- •5.Принципы вероятностных подходов к задачам диагностики и прогнозирования заболеваний.
- •6.Элементы математической статистики. Случайная величина.
- •7. Распределение дискретных и непрерывных случайных величин и их характеристики: математическое ожидание, дисперсия, среднее квадратичное отклонение.
- •8.Примеры различных законов распределения. Нормальный закон распределения
- •9.Генеральная совокупность и выборка. Гистограмма.
- •10. Оценка параметров нормального распределения по опытным данным.
- •11.Доверительный интервал. Интервальная оценка истинного значения измеряемой величины.
- •12.Применение распределения Стьюдента для определения доверительных интервалов. Методы обработки медицинских данных.
- •14. Определение модуля упругости костной ткани.
- •16.Снятие спектральной характеристики уха на пороге слышимости.
- •17.Исследование действия ультразвука на вещество
- •18. «Определение поверхностного натяжения жидкостей методом измерения максимального давления в пузырке воздуха»
- •21.«Градуировка термопары в качестве термометра»
- •23. «Определение параметров импульсных сигналов, используемых для электростимуляции»
- •25.Определение частотной и амплитудной характеристик, полосы частот, динамического диапазона усилителя.
- •26.Определение концентрации оптически активных веществ с помощью поляриметра.
- •27. Исследование зависимости показателя преломления раствора от его концентрации. Определение концентрации раствора с помощью рефрактометра.
- •28. Определение предела увеличения разрешающей способности объектива микроскопа.
- •30. Определение концентрации и молярной экстинкции вещества методом колориметрии, фотометрии.
- •31. Определение собственной люминесценции белка.
- •32.Дозиметрия ионизирующего излучения. Определить интегальную дозу накопления радионуклидов для каждого студента.
- •33. Определение полного и статического давления крови методом н.С. Короткова.
- •34.Градуировка, спектроскопы и определение спектров поглощения вещества по градуировочной кривой.
- •35.Упругие, вязкие и вязкоупругие среды, их механические характеристики и модели.
- •36.Механические свойства костной ткани, мышц, сухожилий, сосудов.
- •44.Эффект Доплера и его применение для неинвазивного измерения скорости кровотока
- •46.Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука. Единицы их измерения - децибелы и фоны.
- •47.Аудиометрия. Фонокардиография.
- •48.Поглощение и отражение акустических волн. Акустический импеданс.
- •49.Ультразвук. Методы получения и регистрации. Действие ультразвука на вещество.
- •50.Биофизические основы действия ультразвука на клетки и ткани организма. Хирургическое и терапевтическое применение ультразвука.
- •51. Ультразвуковая диагностика. Принципы ультразвуковой томографии.
- •52.Инфразвук. Биофизические основы действия инфразвука на биологические объекты.
- •54. Капиллярные явления, их значение в биологических системах. Газовая эмболия.
- •55. Основные понятия гидродинамики. Условие неразрывности струи. Уравнение Бернулли.
- •57.Течение вязкой жидкости. Формула Пуазейля.
- •58.Гидравлическое сопротивление. Распределение давления и скорости крови в ссудистой системе.
- •61. Методы измерения давления крови.
- •2.Метод падающего шарика (метод Стокса).
- •66.Устройство вискозиметра Оствальда. Определение с его помощью вязкости исследуемой жидкости.
- •72. Механизм генерации потенциала действия. Распространение потенциала действия по миелиновым и безмиелиновым нервным волокнам.
- •73.Общие характеристики датчиков температуры.Зависимость сопротивления металлов и полупроводников от температуры.
- •74.Контактная разность потенциалов. Градуировка термопары, термистора и проволочного терморезистора.
- •75.Усилители. Коэффициент усиления усилителя. Требования к усилителям. Классификация усилителей.
- •77.Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя. Предупреждение частотных искажений.
- •79. Повторители. Назначение и типы повторителей.
- •80.Основные характеристики электрического поля. Электрический диполь. Поле диполя. Диполь в электрическом поле.
- •82. Физические основы электрографии тканей и органов. Электрокардиография. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена.
- •83.Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.
- •84.Электропроводность биологических тканей и жидкостей для постоянного тока.
- •85.Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
- •86. Переменный ток. Виды сопротивления. Импеданс
- •89. Основные хар-ки магнитного поля
- •90. Воздействие переменным магнитным полем
- •3) Минимальное количество противопоказаний (поздние сроки беременности, онкологические больные)
- •92.Связь амплитуды, формы импульса, частоты следования импульсов, длительности импульсного сигнала с раздражающим действием импульсного тока. Закон Дюбуа-Реймона.
- •94.Аппаратура для электростимуляции. Примеры использования электростимуляции в клинике. Электростимуляция сердца и ее виды.
- •95.Воздействие высокочастотных токов и полей на организм. Первичные механизмы воздействия. Тепловые и нетепловые эффекты
- •96.Высокочастотная мед аппаратура.Электрохирургия.Местная дарсонвализация, индуктотермия, увч-, мкв- , дцв- и квч-терапия.
- •97.Явление рефракции.Законы отражения и преломления.Молекулярн рефракция в-ва.Удельная рефракуия в-ва.
- •98.Устройство рефрактометра. Определение концентрации растворов с помощью рефрактометра.
- •99.Явление полного внутреннего отражения света, принципы волоконной оптики, устройство современных эндоскопов.
- •100.Ход дучей в микроскопе.Увеличение и предел разрешения оптических микроскопров.
- •101.Формула Аббе.Значение апертурного угла. Ультрафиолетовый микроскоп. Иммерсионные системы. Полезное увеличение. Специальные приемы микроскопии.
- •102. Основы электронной микроскопии. Длина волны де Бройля. Предел разрешения электронного микроскопа.
- •111.Интерференционные и дифракционные приборы. Принцип рентгеноструктурного анализа.
- •112. Понятие о голографии.
- •114.Поляриметрия и спектрополяриметрия. Поляризационные приборы.
- •115.Излучение и поглощение энергии атомами. Структура энергетических уровней атомов. Оптические спектры атома водорода.
- •116.Структура энергетических уровней сложных молекул. Молекулярные спектры.
- •117.Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •118.Спектроскопы, спектрографы, монохроматоры, спектрофотометры и их применение в медицине.
- •129.Тормозное рентгеновское излучение.
- •131. Взаимодействие рентгеновского излучения с веществом.
- •132.Физические принципы рентгенодиагностики и рентгенотерапии.Понятие о рентгеновской компьютерной томографии.
- •133. Основные характеристики ядер атомов.
- •137.Особенности взаимодействия с веществом альфа-, бета-, гамма-излучений и нейтронов.
- •138.Физические принципы защиты от ионизирующих излучений.
- •140.Дозиметрия ионизирующего излучения.
- •143.Методы регистрации ионизирующих излучений, дозиметрические и радиометрические приборы. Естественный радиационный фон. Техногенный фон.
- •144. Цели, задачи и структура биологической физики.
28. Определение предела увеличения разрешающей способности объектива микроскопа.
Цель:Изучить
устройство биологического микроскопа
и научиться определять с помощью
микроскопа размеры малых объектов,
научиться находить разрешающую
способность и полезное увеличение
микроскопа.
Свет, проходя через отверстие,
будет распространяться в виде конического
пучка (конуса). Пятно видно не резко,
т.к. передний фокус глаза не совпадает
с плоскостью, в которой сформировано
изображения от объектива. sin(
/2)
определяется
из прямоугольного треугольника
Тогда
предел разрешения микроскопа:
Для вычисления
предела разрешения микроскопа необходимо
измерить катеты прямоугольного
треугольника.1.Измерить
с помощью измерительной линейки катет
a (расстояние
от предметного столика до изображения
на линейке со шторками). 2.Измерить
катет b
с помощью линейки с подвижными шторками:
А)сдвинуть
шторки, расположенные не линейке. На
черных шторках пятно (основание конуса)
не будет видно;Б)глядя
в микроскоп, осторожно раздвигать
шторки, пока пятно полностью не
появится;В)по
линейке определить расстояние между
шторками 2b
(диаметр пятна). Разделив его на два,
узнаем величину катета b.3.Определить
предел разрешения микроскопа по формуле
(3). 4.Провести
эксперимент для двух объективов с
увеличением 8 и 20 раз.5.Найти
практическое увеличение микроскопа:
Г= Zглаза
/Zмикроскопа,
где Zглаза=
0.078мм. Все
расчеты проводить в системе единиц СИ.
29.Определение
длины волны излучения гелий – неонового
лазера с помощью дифракционной решётки.
Определение размера эритроцита по
дифракции на эритроците излучения гелий
– неонового лазера.
Цель:Определить
длину волны излучения гелий-неонового
лазера с помощью дифракционной решетки.
Определить размеры эритроцита по
дифракции излучения гелий-неонового
лазера на эритроцитах
Дифракционная
решетка представляет собой прозрачную
пластинку, на которой через равные
промежутки a
нанесены параллельные непрозрачные
штрихи шириной b.
Величина c=a+b
называется периодом дифракционной
решетки. При освещении решетки нормально
падающим монохроматическим светом
происходит дифракция. Вторичные
когерентные волны, образующиеся в
результате дифракции, распространяясь
по всем направлениям, интерферируют,
образуя дифракционную
картину.
Длина волны лазерного излучения,
определяемая по дифракционной картине
с использованием максимума третьего
порядка:
Диаметр
эритроцитов, определяемый по дифракционной
картине с использованием максимума
второго порядка:
с- период стандартной дифракционной решетки, - длина волны, а и б – расстояние между требуемыми максимумами дифракционной картины и расстояние между экраном и дифракционной решеткой соответственно, d – диаметр эритроцитов, S – исправленное среднеквадратичное отклонение, и d – ошибки оценки. Формулы для оценки диаметра эритроцита по первому и второму светлому кольцам записывается следующим образом:
1. Необходимо измерить пять раз радиус второго светлого кольца a2 и расстояние от пластины с мазком крови и экраном b. 2. Рассчитать период двумерной решетки d, оценить погрешность измерения. 3. Сравните полученную величину с известными размерами эритроцита.
