- •Физические основы механики, физика колебаний и волн, термодинамика
- •Содержание
- •Библиографический список……………………………………………….174 Приложение…………………………………………………………………175 Введение
- •Общие указания к выполнению лабораторных работ
- •Правила оформления отчета по лабораторным работам.
- •Требования к допуску, выполнению и защите лабораторных работ.
- •Лабораторная работа 1-01 Статистическая обработка результатов эксперимента. Случайные погрешности результатов наблюдений интервалов времени
- •Теоретическое введение
- •Методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Методика измерений
- •Экспериментальная часть
- •Порядок выполнения лабораторной работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Методика измерений
- •Порядок выполнения работы
- •Замечание 1: погрешность времени рассчитывается по стандартной методике расчета погрешностей случайной величины:
- •Контрольные вопросы
- •Экспериментальная установка и методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемые литература
- •Лабораторная работа 1-10 Изучение свободных колебаний пружинного маятника
- •Теоретическое введение
- •Экспериментальная часть
- •О писание установки
- •Обработка результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы
- •Цель работы: Определение жесткости пружины, определение периода свободных колебаний маятника с массивной пружиной.
- •Недостаточность модели 2
- •Экспериментальная часть
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть Математический маятник
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-13 Измерение момента инерции тела методом крутильных колебаний
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Лабораторная установка и методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная установка и методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Методика измерений
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная установка и методика измерений
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Экспериментальная часть Экспериментальная установка и методика измерений
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Экспериментальная часть
- •Методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Методика измерений
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерения
- •Контрольные вопросы
- •Используемая литература
- •Библиографический список
- •Приложение
Недостаточность модели 2
При выводе формулы (11.20) предполагали, что растяжение пружины равномерное. При каком условии это допущение приемлемо? Естественно считать, что это можно сделать, если характерное время τ, связанное с собственными продольными колебаниями пружины, существенно меньше характерного времени, связанного с колебаниями груза (например, периода колебаний T):
.
(11.21)
В этом случае неравномерность растяжения пружины будет успевать выравниваться за период колебаний. За τ можно принять время прохождения возмущения вперед и назад вдоль пружины:
,
(11.22)
где
– скорость распространения упругих
волн по пружине. Для её оценки
воспользуемся выражением, определяющим скорость распространения продольных звуковых волн в твердых телах:
,
(11.23)
где – модуль Юнга, ρ – плотность среды. Для твёрдого тела, например, стержня длиной l и сечением S (см. лаб. работу 1-14):
,
(11.24)
а плотность
,
(11.25)
тогда
.
(11.26)
Таким образом, допущение о равномерном растяжении пружины можно считать приемлемым, если
,
или
.
(11.27)
Допустив, что «значительно меньше» означает «меньше по крайней мере в 10 раз», получаем условие приемлемости допущения:
.
(11.28)
После
возведения в квадрат и с учётом, что
:
.
Далее, учитывая приблизительность
выкладок, вторым слагаемым в правой
части пренебрежём и получим:
.
(11.29)
Требование (11.29) устраняет и ещё одно упрощение модели 2: если масса пружины велика, то она под действием собственного веса будет растягиваться неравномерно (вверху растянута больше, чем внизу), и соотношения (11.12) и (11.13) неверны. Однако можно предположить, что наличие поля силы тяжести не будет влиять на период колебаний, так же как и для маятника с безмассовой пружиной, а всего лишь изменит равновесное положение груза.
Следующий шаг в решении вопроса – это решение задачи на поиск частот нормальных колебаний (см. лаб. работу 2.10) системы, состоящей из точечного груза и пружины с непрерывно распределённой массой. Эта задача сложна, однако в простейшем частном случае её легко можно решить. Этот частный случай – колебания пружины массой M без груза (m=0).
Модель 3. Колебания массивной пружины без груза
П
редполагаем,
что масса пружины распределена непрерывно,
тогда задача сводится к вычислению
основной частоты упругих продольных
колебаний стержня длиной l
с одним
закреплённым концом. Второй конец
свободен, и на нём будет пучность стоячей
волны, а на закреплённом конце будет
узел. Рис. 11.3 даёт представление о
возможных нормальных колебаниях стержня.
На длине стержня должно укладываться полуцелое число длин стоячих волн:
,
n=0,
1, 2, 3, … , (11.30)
где длина стоячей волны равна половине длины волны бегущей:
.
(11.31)
Воспользуемся (11.26), тогда с учётом (11.32):
,
(11.32)
а также (11.30) и (11.31) получим выражение для периода T0 основного тона колебаний (n=0) стержня:
,
или
.
(11.33)
Сравним (11.20) и (11.33). При малом значении массы груза (m→0) (11.20) даёт:
.
Таким образом, в пределах погрешности 10% (11.20) и (11.33) дают одинаковый результат. Можно предположить, что область применимости (11.20) всё-таки шире, чем при . Это предположение предлагается проверить на опыте.
