
- •Основные законы электричества
- •Разность потенциалов
- •Напряжение на участке цепи
- •Закон Ома для участка цепи, не содержащего э.Д.С.
- •Закон Ома для участка цепи, содержащего э.Д.С.
- •Законы Кирхгофа
- •Действие электрического тока
- •Магнетизм и электромагнетизм
- •Электромагнитная индукция
- •Взаимоиндукция
- •Движение электронов в ускоряющем электрическом поле
- •Движение электронов в тормозящем электрическом поле
- •Движение электронов в поперечном электрическом поле
- •Движение электронов в магнитном поле
- •Лекция 2 Переменный ток
- •Резистор в цепи переменного тока
- •Катушка в цепи переменного тока
- •Конденсатор в цепи переменного тока
- •Закон Ома для электрической цепи переменного тока
- •Постоянная составляющая в сигнале переменного тока
- •Среднеквадратическое значение (действующее) переменного тока
- •Соотношение между пиковыми и среднеквадратическими значениями
- •Среднеквадратическое значение сложных сигналов
- •Лекция 3 Форма сигнала
- •Период (Цикл)
- •Частота
- •Скважность
- •Соотношение между частотой и периодом
- •Звуковые волны
- •Гармоники
- •Высота тона
- •Гармонические составляющие прямоугольного сигнала
- •Гармонические составляющие пилообразного сигнала
- •Лекция 4 Резисторы
- •Обозначения резисторов на электрических схемах
- •Резисторы переменного сопротивления
- •Терморезисторы
- •Варисторы
- •Конденсатор
- •Емкость конденсатора
- •Связь заряда, емкости и напряжения
- •Основные параметры конденсаторов
- •Электролитические конденсаторы
- •Конденсаторы построечные и переменной емкости
- •Условные обозначения конденсаторов
- •Основные параметры катушек индуктивности
- •Лекция 5 Физические основы полупроводниковой электроники
- •Электронные и дырочные полупроводники
- •Виды токов в полупроводниках
- •Электронно-дырочный переход и его свойства
- •Лекция 6 Полупроводниковые диоды
- •Конструкция полупроводниковых диодов
- •Вольтамперная характеристика и основные параметры полупроводниковых диодов
- •Выпрямительные диоды
- •Стабилитроны
- •Варикапы
- •Фотодиоды
- •Фоторезисторы
- •Светодиоды
- •Понятие о лазерах и лазерных диодах
- •Классификация и система обозначений диодов
- •Лекция 7 Биполярные транзисторы
- •Усилительные свойства биполярного транзистора
- •Схемы включения биполярных транзисторов
- •Статические характеристики транзисторов
- •Динамический режим работы транзистора
- •Ключевой режим работы транзистора
- •Эквивалентная схема транзистора, включенного по схеме с общей базой
- •Эквивалентная схема транзистора, включенного по схеме с общим эмиттером
- •Эквивалентная схема транзистора, включенного по схеме с общим коллектором
- •Транзистор как активный четырехполюсник
- •Температурное свойство транзисторов
- •Частотное свойство транзисторов
- •Лекция 8 Полевые транзисторы
- •Характеристики и параметры полевых транзисторов
- •Полевые транзисторы с изолированным затвором
- •Понятие о igbt
- •Тиристоры
- •Устройство и принцип действия динисторов
- •Тринисторы
- •Симисторы
- •Классификация и система обозначений тиристоров
- •Лекция 9 Оптрон (оптопара)
- •Фототранзистор и фототиристор
- •Усилители
- •Классификация усилителей
- •Коэффициент усиления
- •Входное сопротивление
- •Измерение входного сопротивления
- •Выходное сопротивление
- •Измерение выходного сопротивления
- •Выходная мощность
- •Согласование сопротивлений для оптимальной передачи мощности
- •Согласование сопротивлений для оптимальной передачи тока
- •Характеристики электронных усилителей
- •Амплитудно-частотная характеристика (ачх)
- •Фазовая характеристика
- •Питание цепи базы транзистора по схеме с фиксированным напряжением базы
- •Термостабилизация рабочей точки при помощи терморезистора и полупроводникового диода
- •Термостабилизация рабочей точки при помощи оос по постоянному напряжению
- •Термостабилизация рабочей точки при помощи оос по постоянному току
- •Усилители напряжения
- •Усилители мощности
- •Широкополосный усилитель
- •Усилители радиочастоты (урч)
- •Лекция 10 Обратная связь в усилителях
- •Структурная схема усилителя с обратной связью
- •Отрицательная обратная связь (оос)
- •Последовательное и параллельное включение обратной связи
- •Операционные усилители
- •Схемы включения операционных усилителей
- •Лекция 11 Генераторы гармонических колебаний
- •Кварцевые генераторы
- •Цифровая и импульсная электроника
- •Транзисторные ключи
- •Логические элементы
- •Интегральные микросхемы
- •Литература
Измерение выходного сопротивления
Из схемы на рис. 9.7 следует. Если выходные клеммы замкнуть накоротко, измерить текущий при этом ток короткого замыкания Iкз (ампер) то получим:
Zout = V/Iкз.
Напряжение V, поставляемое в схему источником, измеряется на выходных клеммах в режиме «холостого хода», то есть при пренебрежимо малом выходном токе. Таким образом, выходное сопротивление легко можно получить как отношение напряжения холостого хода к току короткого замыкания.
Рассмотрев этот принципиальный метод определения выходного сопротивления, необходимо сказать, что на этом пути имеются препятствия, присущие измерению выходного тока короткого замыкания в большинстве случаев. Обычно при коротком замыкании нарушаются условия функционирования схемы и нельзя получить достоверные результаты; в отдельных случаях могут выйти из строя те или иные компоненты, не выдержав ненормально большую нагрузку. Простая иллюстрация неприменимости метода короткого замыкания: попробуйте измерить выходное сопротивление сети переменного тока! Несмотря на эти недостатки с практической точки зрения, использование этого метода оправдано при теоретическом выводе выходного сопротивления схемы и в дальнейшем он применяется в этой главе.
Практический способ измерения выходного сопротивления показан на рис. 9.8.
Рис. 9.8. Измерение выходного сопротивления с использованием шунтирующего резистора.
Здесь выходное напряжение холостого хода измеряется вольтметром или осциллографом с высокоомным входом, а затем выходные клеммы шунтируются нагрузкой с известным сопротивлением R Ом. Уменьшенное выходное напряжение при подключенной нагрузке непосредственно определяется тем же измерительным прибором. Значение Zout можно вычислить как отношение величины, на которую упало напряжение, к выходному току.
Если V - это выходное напряжение холостого хода, а V1 - выходное напряжение на нагрузке R, то падение напряжения на Zout при наличии нагрузки
Vzout = V – V1 = ΔV вольт,
выходной ток при наличии нагрузки I = V1/R ампер, поэтому
Zout = Vzout /I = ΔV/(V1/R) = R ΔV /V1 Ом.
Эквивалентную схему усилителя можно представить так, как показано на рис. 9.9.
Рис. 9.9. Эквивалентная схема усилителя
Задача передачи максимальной энергии от источника сигнала на вход усилителя, а также с выхода усилителя на нагрузку, называется согласованием. В большинстве электронных схем мы имеем дело с сигналами, являющимися напряжениями. Следовательно, в большинстве случаев, когда мы подключаем одну часть схемы к другой, мы хотим в максимальной степени передать напряжение. Для оптимальной передачи напряжения, входное сопротивление усилителя должно быть значительно больше внутреннего сопротивления источника сигнала, а выходное сопротивление меньше сопротивления нагрузки.
На рис. 9.10 показаны два «блока», соединенные друг с другом: для оптимальной передачи напряжения нужно, чтобы Vin было почти равно V, насколько это возможно. Напряжение Vin равно:
Vin = VZin/(Zout + Zin),
Vin ≈ V если Zin >> Zout.
Если условия оптимального согласования сопротивлений не соблюдаются и сигнал поступает на вход схемы с входным сопротивлением, сравнимым с выходным сопротивлением источника, то в самом общем случае будут происходить просто потери напряжения.
Рис. 9.10. Cогласования сопротивлений между двумя устройствами