
- •Основные законы электричества
- •Разность потенциалов
- •Напряжение на участке цепи
- •Закон Ома для участка цепи, не содержащего э.Д.С.
- •Закон Ома для участка цепи, содержащего э.Д.С.
- •Законы Кирхгофа
- •Действие электрического тока
- •Магнетизм и электромагнетизм
- •Электромагнитная индукция
- •Взаимоиндукция
- •Движение электронов в ускоряющем электрическом поле
- •Движение электронов в тормозящем электрическом поле
- •Движение электронов в поперечном электрическом поле
- •Движение электронов в магнитном поле
- •Лекция 2 Переменный ток
- •Резистор в цепи переменного тока
- •Катушка в цепи переменного тока
- •Конденсатор в цепи переменного тока
- •Закон Ома для электрической цепи переменного тока
- •Постоянная составляющая в сигнале переменного тока
- •Среднеквадратическое значение (действующее) переменного тока
- •Соотношение между пиковыми и среднеквадратическими значениями
- •Среднеквадратическое значение сложных сигналов
- •Лекция 3 Форма сигнала
- •Период (Цикл)
- •Частота
- •Скважность
- •Соотношение между частотой и периодом
- •Звуковые волны
- •Гармоники
- •Высота тона
- •Гармонические составляющие прямоугольного сигнала
- •Гармонические составляющие пилообразного сигнала
- •Лекция 4 Резисторы
- •Обозначения резисторов на электрических схемах
- •Резисторы переменного сопротивления
- •Терморезисторы
- •Варисторы
- •Конденсатор
- •Емкость конденсатора
- •Связь заряда, емкости и напряжения
- •Основные параметры конденсаторов
- •Электролитические конденсаторы
- •Конденсаторы построечные и переменной емкости
- •Условные обозначения конденсаторов
- •Основные параметры катушек индуктивности
- •Лекция 5 Физические основы полупроводниковой электроники
- •Электронные и дырочные полупроводники
- •Виды токов в полупроводниках
- •Электронно-дырочный переход и его свойства
- •Лекция 6 Полупроводниковые диоды
- •Конструкция полупроводниковых диодов
- •Вольтамперная характеристика и основные параметры полупроводниковых диодов
- •Выпрямительные диоды
- •Стабилитроны
- •Варикапы
- •Фотодиоды
- •Фоторезисторы
- •Светодиоды
- •Понятие о лазерах и лазерных диодах
- •Классификация и система обозначений диодов
- •Лекция 7 Биполярные транзисторы
- •Усилительные свойства биполярного транзистора
- •Схемы включения биполярных транзисторов
- •Статические характеристики транзисторов
- •Динамический режим работы транзистора
- •Ключевой режим работы транзистора
- •Эквивалентная схема транзистора, включенного по схеме с общей базой
- •Эквивалентная схема транзистора, включенного по схеме с общим эмиттером
- •Эквивалентная схема транзистора, включенного по схеме с общим коллектором
- •Транзистор как активный четырехполюсник
- •Температурное свойство транзисторов
- •Частотное свойство транзисторов
- •Лекция 8 Полевые транзисторы
- •Характеристики и параметры полевых транзисторов
- •Полевые транзисторы с изолированным затвором
- •Понятие о igbt
- •Тиристоры
- •Устройство и принцип действия динисторов
- •Тринисторы
- •Симисторы
- •Классификация и система обозначений тиристоров
- •Лекция 9 Оптрон (оптопара)
- •Фототранзистор и фототиристор
- •Усилители
- •Классификация усилителей
- •Коэффициент усиления
- •Входное сопротивление
- •Измерение входного сопротивления
- •Выходное сопротивление
- •Измерение выходного сопротивления
- •Выходная мощность
- •Согласование сопротивлений для оптимальной передачи мощности
- •Согласование сопротивлений для оптимальной передачи тока
- •Характеристики электронных усилителей
- •Амплитудно-частотная характеристика (ачх)
- •Фазовая характеристика
- •Питание цепи базы транзистора по схеме с фиксированным напряжением базы
- •Термостабилизация рабочей точки при помощи терморезистора и полупроводникового диода
- •Термостабилизация рабочей точки при помощи оос по постоянному напряжению
- •Термостабилизация рабочей точки при помощи оос по постоянному току
- •Усилители напряжения
- •Усилители мощности
- •Широкополосный усилитель
- •Усилители радиочастоты (урч)
- •Лекция 10 Обратная связь в усилителях
- •Структурная схема усилителя с обратной связью
- •Отрицательная обратная связь (оос)
- •Последовательное и параллельное включение обратной связи
- •Операционные усилители
- •Схемы включения операционных усилителей
- •Лекция 11 Генераторы гармонических колебаний
- •Кварцевые генераторы
- •Цифровая и импульсная электроника
- •Транзисторные ключи
- •Логические элементы
- •Интегральные микросхемы
- •Литература
Лекция 7 Биполярные транзисторы
Биполярный транзистор – это полупроводниковый прибор с двумя p-n переходами, имеющий три вывода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов), а управление протекающим через него током осуществляется с помощью управляющего тока. Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.
Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (p-n-p или n-p-n) и соответственно два p-n перехода. Каждый слой полупроводника через невыпрямляющий контакт металл полупроводник подсоединен к внешнему выводу. Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод – коллектором.
На рис. 7.1,а показано схематическое, упрощенное изображение структуры транзистора типа n-p-n и два допустимых варианта условного графического обозначения (рис. 7.1,б).
Транзистор p-n-p устроен аналогично, упрощенное изображение его структуры дано на рис. 7.2, а. Более простой вариант условного графического обозначения – на рис. 7.2,б.
Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки. Но в различных типах транзисторов роль электронов и дырок различна. Транзисторы типа n-p-n более распространены в сравнении с транзисторами типа p-n-p, так как обычно имеют лучшие параметры. Это можно объяснить тем, что основную роль в электрических процессах в транзисторах типа n-p-n играют электроны, а транзисторах типа p-n-p дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки.
Рис.7.1 Структура транзистора типа n-p-n (а) и его графическое обозначение (б)
Рис.7.2. Структура транзистора типа p-n-p (а)
и его графическое обозначение (б)
Важно отметить, что реально площадь коллекторного перехода значительно больше площади эмиттерного перехода, так как такая несимметрия значительно улучшает свойства транзистора. В основе работы биполярного транзистора типа n-p-n лежат те же физические процессы, которые рассмотрены при изучении полупроводникового диода. Особенности транзистора определяются особенностями его конструкции.
Основными элементами транзистора являются два соединенных p-n перехода. Это позволяет дать формальное представление структуры транзистора, показанное на рис. 7.3. Для понимания принципа работы транзистора исключительно важно учитывать, что p-n переходы транзистора сильно взаимодействуют. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот.
Работа транзистора основана на управлении токами электродов в зависимости от приложенных к его переходам напряжений. На Рис.7.3 показан транзистор у которого эмиттерный переход открыт, коллекторный закрыт, что достигается соответствующим включением источников питания.
Рис. 7.3. Носители зарядов при включении транзистора
Благодаря смешению перехода база-эмиттер в прямом направлении электроны из эмиттера n-типа посредством диффузии проходят по базе p-типа по направлению к обедненному слою на переходе база-коллектор. Эти электроны, являющиеся неосновными носителями в области базы, достигнув обедненного слоя, по потенциальному барьеру «как с горки» быстро скатываются в коллектор, создавая тем самым в транзисторе коллекторный ток. Действие смещенного в прямом направлении перехода база-эмиттер напоминает открывание ворот и позволяет току протекать по цепи эмиттер-коллектор. Почему электроны не рекомбинируют с дырками в базе p-типа в процессе диффузии в сторону коллектора? Ответ состоит в том, что базу делают совсем слабо легированной, то есть с низкой концентрацией дырок, и очень тонкой; следовательно, имеется лишь малая вероятность того, что электрон будет перехвачен дыркой и рекомбинирует. Когда электрон рекомбинирует в области базы, происходит кратковременное нарушение равновесия, поскольку база приобретает отрицательный заряд и батарея, которая является источником положительного заряда (дырок) поставляет его в базу, и эти дырки образуют базовый ток транзистора. Благодаря базовому току в базе не происходит накопления отрицательного заряда и переход база-эмиттер поддерживается смещенным в прямом направлении, а это, в свою очередь, обеспечивает протекание коллекторного тока. Таким образом, транзистор является прибором, управляемым током. Отношение тока коллектора к току базы называется коэффициентом усиления тока
β = Iк.n/Iб.
Он должен равняться числу электронов в секунду, успешно проследовавших от эмиттера к коллектору, деленному на число рекомбинировавших. В типичном маломощном кремниевом транзисторе приблизительно 1 из 100 электронов рекомбинирует в базе, так что усиление тока имеет значение порядка 100, поскольку область эмиттера n-типа специально легируется очень сильно, чтобы обеспечить большое число свободных электронов, в то время как область базы легируется совсем слабо, и это дает настолько мало дырок, что ими можно пренебречь при рассмотрении тока через переход база-эмиттер.
Эффективность эмиттера оценивается коэффициентом инжекции, величина которого обычно составляет примерно 0,999:
γ = Iэn/Iэ
где Iэn - часть тока эмиттера, вызванная прохождением электронов,
Iэ = Iэ.n + Iэ.p — полный ток эмиттера, Iэ.n ― электронная составляющая тока,
Iэ.p - дырочная составляющая тока.
Переход носителей зарядов из области, где они были основными, в такую область, где они становятся неосновными, называется инжекцией зарядов. Переход носителей зарядов из области, где они были неосновными, в область, где они становятся основными, называется экстракцией зарядов
Эффективность базы оценивается коэффициентом рекомбинации δ:
δ = Iк.n/ Iэ.n,
где Iк n - часть тока коллектора, вызванная прохождением носителей зарядов.
Эффективность транзистора оценивается коэффициентом α:
α = Iк.n/ Iэ = γ δ,
где α - коэффициент передачи тока эмиттера транзистора или коэффициент усиления по току.
Дырки из коллектора как неосновные носители зарядов будут переходить в базу, образуя обратный ток коллектораIкбо:
Iк = α Iэ + Iкбо.
Эмиттер так сильно легирован, что напряжение лавинного пробоя перехода база-эмиттер обычно всего лишь 6 В. Этот факт нужно иметь в виду при работе с некоторыми переключающими схемами, где необходимо позаботиться о том, чтобы обратные смещения не были слишком большими. Но это обстоятельство может быть и полезным, поскольку переход база-эмиттер маломощного транзистора ведет себя как 6-вольтовый стабилитрон и иногда используется в этом качестве.