Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt.doc
Скачиваний:
63
Добавлен:
06.09.2019
Размер:
32.89 Mб
Скачать

20.2. Критическое напряжение. Пределы применимости формулы Эйлера.

При осевом нагружении стержня в его поперечных сечениях возникают нормальные напряжения сжатия, которые возрастают по мере увеличения нагрузки. Нормальные на­пряжения, соответствующие критической си­ле, называются критическими:

(20.4)

после подстановки значения критической силы из формулы (20.3) получим:

(20.5)

Линейную величину называют минимальным радиусом инерции сечения.

Таким образом, и последняя формула прини­мает вид

или

Безразмерная величина называется гибкостью стержня. Она характеризует сопротивляемость стержня потере устойчивости; с увеличением гибкости уменьшается сопротивляемость стержня потере устойчивости. Заметим, что гибкость . стержня не зависит от материала стержня, а определяется его длиной, формой и размерами сечения.

Определяя значение критической силы, Эйлер исходил из рас­смотрения упругой линии изогнутого стержня, поэтому формула

(20.6)

справедлива только в пределах применимости закона Гука, иначе говоря, до тех пор, пока критическое напряжение не превышает предела пропорциональности материала стержня, т.е. при условии

(20.7)

Отсюда:

Стоящая в правой части неравенства постоянная для данного материала безразмерная величина называется предельной гибкостью:

(20.8)

Применимость формулы Эйлера определяется условием

(20.9)

Формула Эйлера применима только в тех случаях, когда гиб­кость стержня больше или равна предельной гибкости того мате­риала, из которого он изготовлен. Как правило, многие конструкции имеют стержни с гибкостью меньше предельной.

Раздел 4. Расчет и конструирование деталей машин общего назначения и деталей отрасли

Глава 21. Зубчатые передачи

21.1. Геометрический расчет эвольвентных прямозубых передач

Рассмотрим сечение цилиндрического зубчатого колеса с внеш­ними зубьями плоскостью, перпендикулярной к оси колеса (главное, или торцовое сечение). Выделяют окружность вершин зубьев ( ) и окружность впадин ( ), между которыми заключен зуб колеса. Высота зуба

Эвольвентный профиль и окружность впадин соединяются переходной кривой. Общая точка L эвольвенты и переходной кривой называется граничной точкой профиля.

Расстояние между одноименными профилями двух соседних зубь­ев, измеренное по дуге окружности, называется окружным шагом зубьев. Для окружности произвольного радиуса

где Pyокружной шаг;

Syокружная толщина зуба;

eyокружная ширина впадины.

Длину окружности можно выразить через шаг Py и число зубь­ев Z:

откуда

где окружной модуль.

Модуль и шаг зависят от окружности, к которой они относятся.

На колесе выделяется расчетная окружность, на которой шаг и модуль зубьев равны шагу и модулю зуборезного инструмента. Эта окружность называется делительной (r, d), а модуль зубьев на делительной окружности называется расчетным модулем зубчатого колеса:

(21.1)

где P – шаг по делительной окружности (делительный шаг). Значе­ния m регламентированы СТ СЭВ 310-76, ГОСТ 9563-80.

1 ряд– 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4; 5 и т.д.

2 ряд– 0,9; 1,125; 1,375; 1,75; 2,25; 2,75 и т.д.

Диаметр делительной окружности

(21.2)

Центральный угол называется угловым шагом зубьев.

(21.3)

В основе зуборезного инструмента, используемого для нареза­ния эвольвентных цилиндрических колес по методу обкатки, лежит исходный производящий контур, под которым понимается контур зубьев зуборезной рейки в сечении плоскостью, перпендикулярной к направлению ее зубьев. Параметры этого контура стандартизованы (СТ СЭВ 308-76 для ), ГОСТ 13755-81 (рис. 21.2).

Высота зуба исходного производящего контура

(21.4)

где – коэффициент высоты головки зуба;

– коэффициент радиального зазора.

Угол α = 20° называется углом главного профиля.

Прямая, по которой толщина зуба равна ширине впадины, назы­вается делительной. Зубчатые колеса бывают: 1) без смещения ис­ходного контура (не корригированные); 2) со смещением.

Е сли делительная прямая исходного производящего контура касается делительной окружности нарезаемого колеса, то нарезается колесо без смещения, в противном случае нарезается колесо со смещением (рис. 21.3).

В зависимости от коэффициентов смещения зацепляющихся колес различают следующие типы передач: 1)передача без сме­щения (X1 = X2 = 0); 2)равносмещенная передача (X1 = -X2 ≠ 0, Х = X1 + X2 =0); 3) положительная передача (X > 0); 4) отрицательная передача (X< 0). В передачах без смещения и равносмещенных1 (угол зацепления равен углу главного профиля), (делительные окружности одновременно являются и началь­ными), высота зуба h = 2,25m. В передачах без смещения

(21.5)

(21.6)

Межосевые расстояния для стандартных редукторов стандартны:

= 40; 50; 63; 80; 100; 125; 160; 180; 200; 225; 250; 280; 315 и т.д.

При нарезании зубьев без смещения можно изготовить колесо лишь с Z1min≥17 (если X >0, то Z1min = 12).

При окружных скоростях колес

, Z1 и Z2 принимают кратными друг другу;

, Z1 и Z2 принимают взаимно простые числа зубьев.

Расчет геометрических параметров цилиндрических зубчатых передач выполняется по ГОСТ 16530-83.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]