Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt.doc
Скачиваний:
63
Добавлен:
06.09.2019
Размер:
32.89 Mб
Скачать

7.5. Способы передачи вращательного движения

В технике часто возникает необходимость передачи вращательно­го движения от одной машины к другой (например, от электродвига­теля к станку) или внутри какой-либо машины от одной вращающейся детали к другой. Механические устройства, предназначенные для передачи и преобразования вращательного движения, так и называ­ются передачами.

Глава 8. Сложное движение

8.1. Сложное движение точки

Примером сложного движения точки может служить:

а) лодка (если ее принять за материальную точку), плывущая от одного берега реки к другому;

б) шагающий по ступенькам движущегося эскалатора в метро че­ловек также совершает сложное движение относительно неподвижного свода туннеля.

Таким образом, при сложном движении точка, двигаясь относи­тельно некоторой подвижной материальной среды, которую условимся называть подвижной системой отсчета, одновременно передвигается вместе с этой системой отсчета относительно второй системы от­счета, условно принимаемой за неподвижную.

Движение некоторой точки М по отношению к подвижной системе отсчета называется относительным. Движение подвижной системы от­счета вместе со всеми связанными с ней точками материальной сре­ды по отношению к неподвижной системе отсчета называется для точки М переносным. Движение точки М по отношению к неподвижной системе отсчета называется сложным, или абсолютным.

Для того чтобы видеть сложное (абсолютное) движение точки, наблюдатель должен сам быть связан с неподвижной системой отсче­та. Если же наблюдатель находится в подвижной системе отсчета, то он видит лишь относительную часть сложного движения.

Представим, что точка М переместилась за некоторое время от­носительно подвижной системы координат из начального по­ложения M0 в положение М1 по траектории M0М1 (траектории относительного движения точки). За это же время подвижная система координат O1X1Y1 вместе со всеми неизменно связанными с ней точ­ками, а значит, и вместе с траекторией относительного движения точки М переместилась в неподвижной системе координат ОХУ в но­вое положение.

Разделим обе части этого равенства на время движения :

и получим геометрическую сумму средних скоростей:

,

которые направлены вдоль соответствующих векторов перемещений. Если теперь перейти к пределам при , то получим

,

выражающее теорему сложения скоростей: при сложном движении точ­ки абсолютная скорость в каждый момент времени равна геометри­ческой сумме переносной и относительной скоростей.

Если задан угол , то модуль абсолютной скорости

.

Углы, образуемые векторами абсолютной скорости с век­торами и , определяются по теореме синусов.

В частном случае при при сложении этих скоростей образуется ромб или равнобедренный треугольник и, следовательно,

.

8.2. Плоскопараллельное движение тела

Движение твердого тела, при котором все его точки движутся в плоскостях, параллельных некоторой неподвижной плоскости, назы­вается плоскопараллельным.

Изучая плоскопараллельное движение тела М, достаточно рас­сматривать движение его плоского сечения q плоскости ХОУ.

Выберем в сечении q произвольную точку A, которую назовем полюсом. Свяжем с полюсом А некоторую прямую KL , а в самом се­чении вдоль прямой KL проведем отрезок AB, перемещая плоское сечение из положения q в положение q1. Можно сначала передви­нуть его вместе с полюсом А поступательно, а затем повернуть на угол .

Плоскопараллельное движение тела – движение сложное и состоит из поступательного движения вместе с полюсом и вращательного движения вокруг полюса.

Закон плоскопараллельного движения можно задать тремя уравне­ниями:

.

Дифференцируя заданные уравнения плоскопараллельного движе­ния, можно в каждый момент времени определить скорость и ускорение полюса, а также угловую скорость и угловое ускорение тела.

Пусть, например, движение катящегося колеса диаметром d за­дано уравнениями , где и – м, – рад, t – с. Продифференцировав эти уравнения, нахо­дим, что скорость полюса O , угловая ско­рость колеса . Ускорение полюса и угловое ускорение колеса в данном случае равны нулю. Зная скорость полю­са и угловую скорость тела, можно затем определить скорость лю­бой его точки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]