Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt.doc
Скачиваний:
63
Добавлен:
06.09.2019
Размер:
32.89 Mб
Скачать

19.7. Расчеты на прочность и жесткость при кручении.

Прочность бруса, работающего на кручение, считают обеспе­ченной, если наибольшие касательные напряжения, возникающие в его опасном сечении, не превышают допускаемых:

Конечно, незначительное (до 5...6%) превышение расчетного напряжения над допускаемым не опасно.

Эпюры касательных напряжений для круглого сплошного и кольцевого поперечных сечений показаны на рис. 19.16.

В точках, равноудаленных от центра сечения, напряжения одинако­вы.

Н аибольшего значения касатель­ные напряжения достигают в точках контура поперечного сечения.

где полярный момент инерции.

Введя обозначение , получим следующее выражение для максимального касательного напряжения:

(19.12)

Величину (мм3), равную отношению полярного момента инерции сечения к его радиусу, называют полярным моментом со­противления сечения. Его размерность – L3. Очевидно, полярный момент сопротивления является геометрической характеристикой прочности бруса круглого поперечного сечения при кручении.

(19.13)

Эта формула служит для проверочного расчета на прочность.

При проектном расчете и при определении допускаемой на­грузки (момента) из формулы (19.13) соответственно находят или

Для кольца:

;

(19.14)

и для круга:

(19.15)

Для конструкционной углеродистой стали обычно = 20..35 МПа.

Во многих случаях вал должен быть рассчитан не только на прочность, но и на жесткость при кручении.

Рассмотрим брус, жестко защем­ленный одним концом и нагруженный на свободном конце скручивающим мо­ментом М (рис. 19.17). При деформации

б руса его поперечные сечения повер­нутся на некоторые углы по отношению к своему первоначальному положению или, что то же, по отношению к непо­движному сечению (заделке). Угол по­ворота будет тем больше, чем дальше отстоит данное сечение от заделки. Так, для произвольного сечения I, отстоящего от заделки на расстоянии Z , он равен , для сечения II – . Здесь – угол поворота сечения II относительно I или угол закручивания элемента бруса длиной .

Вообще угол поворота произвольного сечения равен углу за­кручивания части бруса, заключенной между этим сечением и за­делкой. Таким образом, угол поворота торцового сечения пред­ставляет собой полный угол закручивания рассматриваемого бруса.

За меру жесткости при кручении принимают относительный угол закручивания (угол закручивания на единицу длины) вала, обозначаемый (встречается обозначение ).

(19.16)

Угол закручивания бруса постоянного диаметра при одинако­вом во всех поперечных сечениях крутящем моменте равен

(19.17)

где lдлина рассматриваемого участка, мм.

В отличие от допускаемого напряжения, зависящего в первую очередь от материала вала, допускаемый угол закручивания зави­сит от назначения вала.

Значения допускаемых углов закручивания, встречающихся в различных отраслях машиностроения, весьма разнообразны; наибо­лее распространены значения

Условие жесткости при кручении имеет вид

(19.18)

– условно жесткость сечения круглого бруса при кручении. Модуль сдвига (G) характеризует жесткость материала, а полярный момент инерции ( ) является геометрической характеристикой жесткости бруса.

При проектном расчете отсюда определяют требуемое значение , а затем по формуле (19.19) или (19.20) вычисляют диаметр ва­ла. Из двух значений диаметра вала, определенных из расчетов на прочность и жесткость, в качестве окончательного (исполнитель­ного размера) должен быть, конечно, принят больший.

(19.19)

Для круга

(19.20)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]