Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt.doc
Скачиваний:
63
Добавлен:
06.09.2019
Размер:
32.89 Mб
Скачать

7.3. Частные случаи вращательного движения

1. Равномерное вращательное движение. Если угловое ускорение и, следовательно, угловая скорость

, (7.1)

то вращательное движение называется равномерным. Из выражения (7.1) после разделения переменных

.

Если при изменении времени от 0 до t угол поворота изменялся от (начальный угол поворота) до , то, интегрируя уравнение в этих пределах

,

получаем уравнение равномерного вращательного движения

,

которое в окончательном виде записывается так:

(7.2)

Если , то

(7.3)

Таким образом, при равномерном вращательном движении угловая скорость

или при

2. Равнопеременное вращательное движение. Если угловое ускорение

, (7.4)

то вращательное движение называется равнопеременным. Производя разделение переменных в выражении (7.4):

и приняв, что при изменении времени от 0 до t угловая скорость изменилась от (начальная угловая скорость) до , проинтегрируем уравнение в этих пределах:

или

т.е. получим уравнение

(7.5)

выражающее значение угловой скорости в любой момент времени.

Закон равнопеременного вращательного движения или, с учетом уравнения (7.5):

Полагая, что в течение времени от 0 до t угол поворота изменялся от до , проинтегрируем уравнение в этих пределах:

или

Уравнение равнопеременного вращательного движения в оконча­тельном виде:

. (7.6)

Первую «вспомогательную формулу получим» исключив из формул (7.5) и (7.6) время:

(7.7)

Исключив из тех же формул угловое ускорение , получим вторую вспомогательную формулу:

, (7.8)

где – средняя угловая скорость при равнопере­менном вращательном движении.

Когда и , формулы (7.5), (7.6), (7.7) и (7.8) приобретают более простой вид:

В процессе конструирования угловое перемещение выражают не в радианах, а просто в оборотах.

Угловая скорость, выражаемая количеством оборотов в минуту, называется частотой вращения и обозначается n. Установим зависимость между (рад/с) и n (об/мин). Так как , то при n (об/мин) за t = 1 мин = 60с угол поворота . Следо­вательно,

.

При переходе от угловой скорости (рад/с) к частоте вращения n (об/мин) имеем

.

7.4. Скорости и ускорения различных точек вращающегося тела

Определим скорость и ускорение любой точки в любой момент времени. Для этой цели установим зависимость между угловыми величи­нами , и , характеризующими вращательное движение тела, и линейными величинами и , характеризующими движение точек тела.

Допустим, что тело, показанное на рисунке, вращаемся согласно уравнению . Требуется определить скорость и ускорение точки А этого тела, расположенной на расстоянии от оси вращения O. Пусть тело за некоторое время t повернулось на угол , а точка А, двигаясь по окружности из некоторого начального положения , переместилась на расстояние . Так как угол выражается в радианах, то

(7.9)

т.е. расстояние, пройденное точкой вращающегося тела, пропорционально его углу поворота. Расстояние S и угол поворота – функции времени, a – величина, постоянная для данной точки. Продифференцируем по времени обе части равенства (7.9) и получим

но – скорость точки, a – угловая скорость тела, поэтому

(7.10)

т.е. скорость точки вращающегося тела пропорциональна его угловой скорости.

Из формулы (7.10) видно, что для точек, расположенных на оси вращения, и скорости этих точек также равны нулю. По мере изменения , т.е. у точек, находящихся дальше от оси вращения, скорости тем больше, чем больше значение . Пропорциональная зависимость скоростей различных точек вращающегося тела от их расстояний относительно оси вращения показана на рисунке.

Продифференцировав обе части равенства (7.10), имеем

,

но – касательное ускорение точки, a – угловое ускорение тела, значит

(7.11)

т.е. касательное ускорение точки вращающегося тела пропорцио­нально его угловому ускорению.

Подставив в формулу , значение скорости из формулы (7.10), получим

(7.12)

т.е. нормальное ускорение точки вращающегося тела пропорционально второй степени его угловой скорости.

Из формулы после подстановки вместо и их значений из формул (7.11) и (7.12) получаем

(7.13)

Направление вектора ускорения, т.е. угол , определяется по одной из формул , причем последнюю из них можно представить теперь в таком виде:

(7.14)

Из формул (7.13) и (7.14) следует, что для точек тела при его вращательном движении по заданному закону можно сначала найти ускорение , а затем разложить его на касательное ускорение и нормальное ускорение , модуль которых

и

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]