Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЕММ%2083[1].doc
Скачиваний:
12
Добавлен:
27.08.2019
Размер:
3.69 Mб
Скачать

12. Класифікація задач математичного програмування

Задачі математичного програмування поділяються на два ве-ликі класи лінійні та нелінійні. Якщо цільова функція та об-меження є лінійними функціями, тобто вони містять змінні Хj у першому або нульовому степені. В усіх інших випадках задача буде нелінійною.

Економічні та технологічні процеси, як правило, є нелінійни-ми, стохастичними, розвиваються в умовах невизначеності. Лінійні економіко-математичні моделі часто є неадекватними, а тому доводиться будувати нелінійні та стохастичні моделі. Проте слід зазначити, що на практиці застосовують, здебільшого, лінійні економіко-математичні моделі. Часто нелінійні залежності апроксимують (наближають) лінійними. Такий підхід на практиці є доволі ефективним.

У нелінійному програмуванні виокремлюють такі класи: опукле програмування.

Множина S в n-мірному евклідовому просторі називається опуклою множиною, якщо для будь-яких точок (елементів) цієї множини точки належать множині S за всіх значень які належать відрізку

Квадратичне програмування — цільова функція квадратична, а обмеження лінійні.

Далі задачі математичного програмування поділяють на дис-кретні і неперервні. Дискретними називають задачі, в яких одна, кілька або всі змінні набувають лише дискретних значень. Окремий клас становлять задачі, в яких одна або кілька змінних набувають цілочислових значень, тобто задачі цілочислового програмування. Якщо всі змінні можуть набувати будь-якого значення в деяких інтервалах числової осі, то задача є неперервною.

Задачі математичного програмування поділяються також на детерміновані і стохастичні. Детерміновані задачі не містять випадкових змінних і параметрів, котрі набувають значень відповідно до функції розподілу. Якщо змінні задані функціями розподілу, наприклад нормального з математичним сподіванням а і дисперсією σ, то така задача є стохастичною.

Якщо у відповідних економічних процесах випадкові явища не відіграють істотної ролі, то задачу можна розв’язувати як детерміновану. У противному разі адекватна економіко-математична модель має бути стохастичною, тобто містити випадкові функції та величини.

Економічні процеси розвиваються в часі, а тому відповідні моделі мають відображати динаміку. Це означає, що для знаходження оптимального плану потрібно застосовувати класи задач математичного програмування статичні (однокрокові) і динамічні (багатокрокові).

13. Загальна математична модель лінійного програмування. Приклади економічних задач лп.

Загальна лінійна економіко-математична модель економічних процесів та явищ — так звана загальна задача лінійного програмування подається у вигляді:

за умов

Отже, потрібно знайти значення змінних x1, x2, …, xn, які задовольняють умови і цільова функція набуває екстремального (максимального чи мінімального) значення.

Для загальної задачі лінійного програмування використову-ються такі поняття.

Вектор Х = (х1, х2, …, хn), координати якого задовольняють си-стему обмежень (2.2) та умови невід’ємності змінних, нази-вається допустимим розв’язком (планом) задачі лінійного про-грамування.

Допустимий план Х = (х1, х2, …, хn) називається опорним пла-ном задачі лінійного програмування, якщо він задовольняє не ме-нше, ніж m лінійно незалежних обмежень системи (2.2) у вигляді рівностей, а також обмеження щодо невід’ємності змінних.

Опорний план Х = (х1, х2, …, хn), називається невиродженим, якщо він містить точно m додатних змінних, інакше він вироджений.

Опорний план, за якого цільова функція досягає масимального (чи мінімального) значення, називається оптимальним розв’язком (планом) задачі лінійного програмування.

Задачу можна легко звести до канонічної форми, тобто до такого вигляду, коли в системі обмежень всі bi (i = 1, 2, …, m) невід’ємні, а всі обмеження є рівностями.

Якщо якесь bi від’ємне, то, помноживши i-те обмеження на

(– 1), дістанемо у правій частині відповідної рівності додатне значення. Коли i-те обмеження має вигляд нерівності аi1х1 + аi2х2 + … + аinxn ≤ bi, то останню завжди можна звести до рівності, увівши додаткову змінну xn + 1: ai1x1 + ai2x2 + … +

+ ain xn + xn + 1 = bi.

Аналогічно обмеження виду аk1x1 + ak2x2 + … + aknxn ≥ bk зво-дять до рівності, віднімаючи від лівої частини додаткову змінну хn + 2, тобто: ak1x1 + ak2x2 + … + aknxn – xn + 2 = bk (хn+1 ≥ 0, хn+2 ≥ 0).

Задача визначення оптимального плану виробництва: для деякої виробничої системи (цеху, підприємства, галузі) необхідно визначити план випуску n видів продукції Х = (х1, х2, …, хn) за умови найкращого способу використання її наявних ресурсів. У процесі виробництва задіяні m ресурсів: сировина, трудові ресурси, технічне оснащення тощо.

Транспортна задача: розглядається m пунктів виробництва та n пунктів споживання деякої однорідної продукції. Відомі обсяги виробництва продукції у кожному i-му пункті — та потреби кожного j-го пункту споживання –– . Також задана матриця розмірністю , елементи якої є вартостями транспортування одиниці продукції з i-го пункту виробництва до j-го пункту споживання. Необхідно визначити оптимальні обсяги перевезень продукції з урахуванням наявності продукції у виробників та забезпечення вимог споживачів.