
- •1. Сутність моделювання. Сформулюйте поняття «модель» та «метод моделювання», поясніть відмінності даних понять.
- •2. Опишіть особливості, принципи математичного моделювання
- •3. Поясніть необхідність використання нелінійних математичних моделей
- •4. Розкрийте сутність економічних спостережень і вимірів
- •5. Чим пояснюється наявність випадковості і невизначеності економічного розвитку
- •9. Охарактеризуйте економіку як складну систему з внутрішньо притаманним ризиком
- •6. Наведіть основні елементи класифікації економіко-математичних моделей
- •7. Опишіть основні етапи економіко-математичного моделювання
- •8. Які завдання вирішуються при перевірці адекватності моделей?
- •10. Опишіть системні властивості економічних рішень
- •14. Наведіть форми запису моделей лінійного програмування в розгорнутому, скороченому та векторно-матричному вигляді.
- •11. Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування.
- •12. Класифікація задач математичного програмування
- •13. Загальна математична модель лінійного програмування. Приклади економічних задач лп.
- •16. Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •26. Опишіть суть аналізу обмежень дефіцитних і недефіцитних ресурсів.
- •15. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •19. Знаходження розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- •17. Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- •17. (Продовження)
- •20. Суть симплексного методу із штучним базисом. Ознака оптимальності плану із штучним базисом. Відмінність від класичного методу.
- •18. Суть теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •22. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •21. Економічна інтерпретація прямої та двоїстої задач лінійного програмування
- •25. Сутність аналізу розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •23. Теореми двоїстості. Економічна інтерпретація першої та другої теорем двоїстості.
- •24. Приклад застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- •27. Опишіть суть аналізу коефіцієнтів цільової функції задач лінійного програмування.
- •28. Постановка транспортної задачі. Опис алгоритму одного із методів рішення задач транспортної задачі.
- •29. Сутність цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •30. Геометрична інтерпретація задачі цілочислового програмування.
- •35. Геометрична інтерпретація задач нелінійного програмування.
- •31. Сутність методу Гоморі.
- •32. Економічна і математична постановка задачі дробово-лінійного програмування
- •33. Геометрична інтерпретація задачі дробово-лінійного програмування
- •34. Економічна і математична постановка задачі нелінійного програмування.
- •36. Суть умовного та безумовного екстремуму функції.
- •37. Опишіть суть методу множників Лагранжа.
- •38. Необхідні умови існування сідлової точки
- •39. Опишіть сутність теореми Куна-Таккера.
- •40. Опишіть сутність опуклого програмування
- •41. Постановка задачі квадратичного програмування та її математична модель.
- •42. Градієнтні методи розв’язання задач нелінійного програмування та їх класифікація.
- •43. Загальний вигляд теоретичного та емпіричного рівнянь парної лінійної регресії, їх складові елементи.
- •44. Причини, які спонукають появу випадкової складової ε в регресійних моделях.
- •45. Опишіть поняття специфікації та основні етапи побудови економетричної моделі.
- •47. Характерстики та статистичні властивості емпіричних параметрів оцінок β0*, β1*.
- •46. Параметри моделі парної лінійної регресії, їх сутність та оцінювання. Умови застосування мнк.
- •48. Суть і обчислення коваріаційної матриці оцінок параметрів моделі
- •49. Описати алгоритм побудови довірчих інтервалів із заданою надійністю для параметрів β0,β1 і функції регресії Використання розподілу Стьюдента.
- •50. Побудова точкового та інтервального прогнозу залежної змінної в моделі парної лінійної регресії.
- •51. Описати алгоритм перевірки на статистичну значущість β1.
- •52. Коефіцієнт детермінації r2: формули для обчислення та сутність.
- •53. Теоретична та статистична лінійна множинна модель та їх запис у векторно-матричній формі.
- •54. Умови Гаусса-Маркова для парної та множинної лінійної регресії.
- •55. Напишіть та поясніть формулу у матричному вигляді визначення коефіцієнтів регресії в моделі множинної лінійної регресії?
- •56. Як виявити ознаку мультиколінеарності в лінійних моделях? в якому випадку: , , ?
- •57. Суть та наслідки мультиколінеарності. Методи усунення з моделі ознаки мультиколінеарності.
- •58. Опишіть алгоритм Фаррара–Глобера дослідження наявності мультиколінеарності. Що характеризують критерії χ2, f, t ?
- •59. Поняття виробничої функції. Виробнича функція Кобба-Дугласа. Визначення для неї .
- •60. Суть гетероскедастичності. Які негативні наслідки викликає ознака гетероскедастичності в лінійних моделях?
- •61. Перерахуйте основні методи визначення гетероскедастичності. Вкажіть основні відмінності між ними.
- •62. В чому полягає суть тесту Гельдфельда-Квандта? Послідовність його виконання?
- •63. Особливості матриці s та суть гіпотез залежності пропорційності залишків до зміни поряснювальної.
- •64. Узагальнений метод найменших квадратів Ейткена. Особливості та алгоритм.
- •65. Особливості застосування критерію μ у визначеності гетероскедастичності.
- •66. Модель лінійної регресії з автокорельованими збуренями. Наслідки автокорельованості на оцінки мнк.
- •67. Основи використання критерію Дарбіна – Уотсона для визначення автокорельованості
- •68. Дайте основні визначення економічного ризику
- •69. Вкажіть основні кроки процедури аналізу ризику
- •70. Дайте характеристику основних чинників ризику
- •71. Наведіть основні типи та види ризиків. Дайте їм характеристики
- •72. Наведіть основні відмінності методу аналогій та чутливості у кількісному аналізі ризику
- •73. Дайте характеристику основних кроків аналiзу ризику методами iмiтацiйного моделювання
- •74. Охарактеризуйте п’ять спрощених ситуацій прийняття рішення. Поясніть приклад однієї із них графічно.
- •75. Охарактеризуйте зони ризику збитків на графічному прикладі функції щільності розподілу ймовірності збитків
- •76. Охарактреризуйте ймовірність як один з підходів до оцінки ризику
- •78. Поясніть основні відмінності методів оц-ня ризику як величини очікуваної невдачі та методу зваженого середньогеометричного значення економічного показника
- •77. Охарактеризуйте інгредієнт економічного показника ризику, основні відмінності м-дів абсолютному вираження та спрощеного оцінювання ризику. Наведіть приклад.
- •79. Дисперсія та середньоквадратичне відхилення як міра ризику. Наведіть приклад
- •80. Семіваріація та семіквадратичне відхилення як міра ризику. Наведіть приклад
- •82. Поняття премії за ризик. Наведіть графічний приклад
- •83. Опишіть поняття схильності – несхильності до ризику.
- •Сутність моделювання. Сформулюйте поняття «модель» та «метод моделювання», поясніть відмінності даних понять.
7. Опишіть основні етапи економіко-математичного моделювання
1. Постановка економічної проблеми та її якісний аналіз. Головне — чітко сформулювати сутність проблеми, припущення, які приймаються, і ті питання, на які необхідно одержати відповіді. Цей етап включає виокремлення найважливіших рис і властивостей об’єкта, що моделюється, і абстрагування від другорядних; вивчення структури об’єкта і головних залежностей, що поєднують його елементи; формулювання гіпотез (хоча б попередніх), що пояснюють поведінку і розвиток об’єкта.
2. Побудова математичних моделей. Це — етап формалізації економічної проблеми, вираження її у вигляді конкретних математичних залежностей і відношень (функцій, рівнянь, нерівностей тощо). Спочатку зазвичай визначається основна конструкція (тип) математичної моделі, а потім уточнюються деталі цієї конструкції (конкретний перелік змінних і параметрів, форма зв’язків
3. Математичний аналіз моделі. Метою цього етапу є з’ясування загальних властивостей моделі. Тут часто застосовують математичні прийоми дослідження.
4. Підготовка вихідної інформації. Моделювання висуває жорсткі вимоги до системи інформації. Водночас реальні можливості одержання інформації обмежують вибір моделей, які пропонуються до практичного використання. Разом з тим береться до уваги не лише принципова можливість підготовки інформації (за певний період), але й витрати на підготовку відповідних інформаційних масивів. Ці витрати не повинні перевищувати ефект від використання додаткової інформації. У процесі підготовки інформації широко використовуються методи теорії ймовірностей, теоретичної і математичної статистики.
5. Числові розв’язки. Цей етап включає розробку алгоритмів для числового розв’язування задачі, складання програм на ЕОМ і безпосереднє проведення розрахунків.
6. Аналіз числових результатів та їх використання. На цьому, завершальному, етапі циклу виникає питання про правильність і повноту результатів моделювання, про рівень практичного застосування останніх.
Математичні методи перевірки можуть виявляти некоректність підходу до побудови моделі і тим самим звужувати клас потенційно правильних моделей. Неформальний аналіз теоретичних висновків і числових результатів, які одержують за допомогою моделі, зіставлення їх із знаннями, якими володіємо, і фактами дійсності також дозволять знаходити недоліки постановки економічної задачі, сконструйованої математичної моделі, її інформаційного і математичного забезпечення.
8. Які завдання вирішуються при перевірці адекватності моделей?
Складність економічних процесів і явищ та інші особливості економічних систем утруднюють не лише побудову математичних моделей, а й перевірку їх адекватності, істинності одержаних результатів.
Головне завдання економічної науки конструктивне: розроблення наукових методів аналізу й управління економікою. Тому поширений тип математичних моделей економіки — це моделі керованих і регульованих економічних процесів, які використовуються для перетворення економічної дійсності. Такі моделі називають нормативними. Якщо орієнтувати нормативні моделі тільки на підтвердження дійсності, то вони не зможуть слугувати інструментом вирішення якісно нових соціально-економічних завдань.
Специфіка верифікації нормативних моделей економіки полягає у тому, що вони, як правило, «конкурують» з іншими, такими, що вже знайшли практичне застосування, методами аналізу планування й управління. Разом з тим далеко не завжди можна поставити чіткий експеримент з верифікації моделі, усунувши впливи інших керуючих чинників на керований об’єкт. Ситуація ще більше ускладнюється, коли виникає питання про верифікацію моделей довгострокового прогнозування і планування (як дескриптивних, так і нормативних). Адже не можна 10—15 років і більше пасивно чекати настання подій, щоб перевірити правильність концептуальних положень моделі. Незважаючи на зазначені ускладнюючі обставини, відповідність моделі об’єкта (процесу) фактам і тенденціям реального економічного буття залишається важливим критерієм, який визначає напрям удосконалення моделей. Всебічний аналіз розходжень, які виникають між моделлю та дійсністю, зіставлення результатів, одержаних на базі конкретної економіко-математичної моделі, з результатами застосування інших методів пізнання дійсності допомагає визначити шляхи корекції моделей.
Значна роль у перевірці адекватності моделей належить логічному аналізу, в тому числі й засобами самого математичного моделювання. Такі формалізовані прийоми верифікації моделей, як доведення існування рішення, перевірка істинності статистичних гіпотез про зв’язки між параметрами і змінними моделі, зіставлення розмірності величин тощо, дозволяє звузити клас потенційно «правильних» моделей. Внутрішня несуперечність положень перевіряється також шляхом порівняння одержуваних за допомогою даної моделі результатів з результатами «конкуруючих» моделей.
Оцінюючи сучасний стан проблеми адекватності математич-них моделей в економіці, необхідно визнати, що створення конструктивної комплексної методики верифікації моделей, котра враховує як об’єктивні особливості модельованих об’єктів, так і особливості їх пізнання, залишається одним із найактуальніших завдань економіко-математичних досліджень.