
- •1. Сутність моделювання. Сформулюйте поняття «модель» та «метод моделювання», поясніть відмінності даних понять.
- •2. Опишіть особливості, принципи математичного моделювання
- •3. Поясніть необхідність використання нелінійних математичних моделей
- •4. Розкрийте сутність економічних спостережень і вимірів
- •5. Чим пояснюється наявність випадковості і невизначеності економічного розвитку
- •9. Охарактеризуйте економіку як складну систему з внутрішньо притаманним ризиком
- •6. Наведіть основні елементи класифікації економіко-математичних моделей
- •7. Опишіть основні етапи економіко-математичного моделювання
- •8. Які завдання вирішуються при перевірці адекватності моделей?
- •10. Опишіть системні властивості економічних рішень
- •14. Наведіть форми запису моделей лінійного програмування в розгорнутому, скороченому та векторно-матричному вигляді.
- •11. Сутність оптимізаційних моделей. Приклади економічних задач математичного програмування.
- •12. Класифікація задач математичного програмування
- •13. Загальна математична модель лінійного програмування. Приклади економічних задач лп.
- •16. Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •26. Опишіть суть аналізу обмежень дефіцитних і недефіцитних ресурсів.
- •15. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •19. Знаходження розв’язку задачі лінійного програмування. Алгоритм симплексного методу.
- •17. Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- •17. (Продовження)
- •20. Суть симплексного методу із штучним базисом. Ознака оптимальності плану із штучним базисом. Відмінність від класичного методу.
- •18. Суть теореми про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •22. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •21. Економічна інтерпретація прямої та двоїстої задач лінійного програмування
- •25. Сутність аналізу розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •23. Теореми двоїстості. Економічна інтерпретація першої та другої теорем двоїстості.
- •24. Приклад застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- •27. Опишіть суть аналізу коефіцієнтів цільової функції задач лінійного програмування.
- •28. Постановка транспортної задачі. Опис алгоритму одного із методів рішення задач транспортної задачі.
- •29. Сутність цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •30. Геометрична інтерпретація задачі цілочислового програмування.
- •35. Геометрична інтерпретація задач нелінійного програмування.
- •31. Сутність методу Гоморі.
- •32. Економічна і математична постановка задачі дробово-лінійного програмування
- •33. Геометрична інтерпретація задачі дробово-лінійного програмування
- •34. Економічна і математична постановка задачі нелінійного програмування.
- •36. Суть умовного та безумовного екстремуму функції.
- •37. Опишіть суть методу множників Лагранжа.
- •38. Необхідні умови існування сідлової точки
- •39. Опишіть сутність теореми Куна-Таккера.
- •40. Опишіть сутність опуклого програмування
- •41. Постановка задачі квадратичного програмування та її математична модель.
- •42. Градієнтні методи розв’язання задач нелінійного програмування та їх класифікація.
- •43. Загальний вигляд теоретичного та емпіричного рівнянь парної лінійної регресії, їх складові елементи.
- •44. Причини, які спонукають появу випадкової складової ε в регресійних моделях.
- •45. Опишіть поняття специфікації та основні етапи побудови економетричної моделі.
- •47. Характерстики та статистичні властивості емпіричних параметрів оцінок β0*, β1*.
- •46. Параметри моделі парної лінійної регресії, їх сутність та оцінювання. Умови застосування мнк.
- •48. Суть і обчислення коваріаційної матриці оцінок параметрів моделі
- •49. Описати алгоритм побудови довірчих інтервалів із заданою надійністю для параметрів β0,β1 і функції регресії Використання розподілу Стьюдента.
- •50. Побудова точкового та інтервального прогнозу залежної змінної в моделі парної лінійної регресії.
- •51. Описати алгоритм перевірки на статистичну значущість β1.
- •52. Коефіцієнт детермінації r2: формули для обчислення та сутність.
- •53. Теоретична та статистична лінійна множинна модель та їх запис у векторно-матричній формі.
- •54. Умови Гаусса-Маркова для парної та множинної лінійної регресії.
- •55. Напишіть та поясніть формулу у матричному вигляді визначення коефіцієнтів регресії в моделі множинної лінійної регресії?
- •56. Як виявити ознаку мультиколінеарності в лінійних моделях? в якому випадку: , , ?
- •57. Суть та наслідки мультиколінеарності. Методи усунення з моделі ознаки мультиколінеарності.
- •58. Опишіть алгоритм Фаррара–Глобера дослідження наявності мультиколінеарності. Що характеризують критерії χ2, f, t ?
- •59. Поняття виробничої функції. Виробнича функція Кобба-Дугласа. Визначення для неї .
- •60. Суть гетероскедастичності. Які негативні наслідки викликає ознака гетероскедастичності в лінійних моделях?
- •61. Перерахуйте основні методи визначення гетероскедастичності. Вкажіть основні відмінності між ними.
- •62. В чому полягає суть тесту Гельдфельда-Квандта? Послідовність його виконання?
- •63. Особливості матриці s та суть гіпотез залежності пропорційності залишків до зміни поряснювальної.
- •64. Узагальнений метод найменших квадратів Ейткена. Особливості та алгоритм.
- •65. Особливості застосування критерію μ у визначеності гетероскедастичності.
- •66. Модель лінійної регресії з автокорельованими збуренями. Наслідки автокорельованості на оцінки мнк.
- •67. Основи використання критерію Дарбіна – Уотсона для визначення автокорельованості
- •68. Дайте основні визначення економічного ризику
- •69. Вкажіть основні кроки процедури аналізу ризику
- •70. Дайте характеристику основних чинників ризику
- •71. Наведіть основні типи та види ризиків. Дайте їм характеристики
- •72. Наведіть основні відмінності методу аналогій та чутливості у кількісному аналізі ризику
- •73. Дайте характеристику основних кроків аналiзу ризику методами iмiтацiйного моделювання
- •74. Охарактеризуйте п’ять спрощених ситуацій прийняття рішення. Поясніть приклад однієї із них графічно.
- •75. Охарактеризуйте зони ризику збитків на графічному прикладі функції щільності розподілу ймовірності збитків
- •76. Охарактреризуйте ймовірність як один з підходів до оцінки ризику
- •78. Поясніть основні відмінності методів оц-ня ризику як величини очікуваної невдачі та методу зваженого середньогеометричного значення економічного показника
- •77. Охарактеризуйте інгредієнт економічного показника ризику, основні відмінності м-дів абсолютному вираження та спрощеного оцінювання ризику. Наведіть приклад.
- •79. Дисперсія та середньоквадратичне відхилення як міра ризику. Наведіть приклад
- •80. Семіваріація та семіквадратичне відхилення як міра ризику. Наведіть приклад
- •82. Поняття премії за ризик. Наведіть графічний приклад
- •83. Опишіть поняття схильності – несхильності до ризику.
- •Сутність моделювання. Сформулюйте поняття «модель» та «метод моделювання», поясніть відмінності даних понять.
23. Теореми двоїстості. Економічна інтерпретація першої та другої теорем двоїстості.
(перша теорема двоїстості). Якщо одна з пари спряжених задач має оптимальний план, то й друга задача також має розв’язок, причому для оптимальних розв’язків значення цільових функцій обох задач збігаються, тобто maxF=minZ
Економічний
зміст першої теореми двоїстості.
Максимальний прибуток (Fmax)
підприємство отримує за умови виробництва
продукції згідно з оптимальним планом
,
однак таку саму суму грошей (
)
воно може мати, реалізувавши ресурси
за оптимальними цінами
.
За умов використання інших планів
на підставі основної нерівності теорії
двоїстості можна стверджувати, що
прибутки від реалізації продукції
завжди менші, ніж витрати на її виробництво.
Теорема
(друга теорема двоїстості для симетричних
задач). Для того, щоб плани X*
та Y*
відповідних спряжених задач були
оптимальними, необхідно і достатньо,
щоб виконувалися умови доповнюючої
нежорсткості:
Економічний
зміст другої теореми двоїстості
стосовно
оптимального плану Х*
прямої задачі.
Якщо для виготовлення всієї продукції
в обсязі, що визначається оптимальним
планом Х*,
витрати одного і-го
ресурсу строго менші, ніж його загальний
обсяг bi,
то відповідна оцінка такого ресурсу
(компонента оптимального плану двоїстої
задачі) буде дорівнювати нулю, тобто
такий ресурс за даних умов для виробництва
не є «цінним».
Якщо ж витрати ресурсу дорівнюють його наявному обсягові bi, тобто його використано повністю, то він є «цінним» для виробництва, і його оцінка буде строго більшою від нуля.
Економічне
тлумачення другої теореми двоїстості
щодо оптимального плану Y*
двоїстої задачі:
у разі, коли деяке j-те
обмеження виконується як нерівність,
тобто всі витрати на виробництво одиниці
j-го
виду продукції перевищують її ціну сj,
виробництво такого виду продукції є
недоцільним, і в оптимальному плані
прямої задачі обсяг такої продукції
дорівнює нулю.
Якщо
витрати на виробництво j-го
виду продукції дорівнюють ціні одиниці
продукції cj,
то її необхідно виготовляти в обсязі,
який визначає оптимальний план прямої
задачі
.
Теорема
(третя теорема двоїстості). Компоненти
оптимального плану двоїстої задачі
дорівнюють значенням частинних похідних
від цільової функції
за відповідними аргументами
,
або
24. Приклад застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
До заданої задачі лінійного програмування записати двоїсту задачу. Розв’язавши двоїсту задачу графічно, визначити оптимальний план прямої задачі.
min Z = x1 + 2x2 + 2x3;
Розв’язання. За відповідними правилами побудуємо двоїсту задачу:
mах F = y1 + 4y2;
Зауважимо, що задачі несиметричні, і тому змінна у1, що відповідає першому рівнянню в системі обмежень прямої задачі, може мати будь-який знак, а змінна у2 — лише невід’ємна.
Двоїста задача має дві змінні, а отже, її можна розв’язати графічно (рис. 3.2).
Рис. 3.2
Найбільшого значення цільова функція двоїстої задачі F досягає в точці В багатокутника ABCD. Її координати визначимо розв’язанням системи рівнянь:
Отже, Y* = (– 2/3; 4/3); mах F = 1 (– 2/3) + 4 4/3 = 14/3.
Оптимальний план прямої задачі визначимо за допомогою співвідношень другої теореми двоїстості.
Підставимо Y* у систему обмежень двоїстої задачі і з’ясуємо, як виконуються обмеження цієї задачі:
Оскільки перше обмеження для оптимального плану двоїстої задачі виконується як строга нерівність, то висновуємо, що перша змінна прямої задачі дорівнюватиме нулю х1 = 0 (перша частина другої теореми двоїстості).
Тепер проаналізуємо оптимальний план двоїстої задачі. Оскільки друга компонента плану у2 = 4/3 додатна, то друге обмеження прямої задачі для Х* виконуватиметься як строге рівняння (друга частина другої теореми двоїстості).
Можна записати систему обмежень прямої задачі як систему двох рівнянь, в якій х1 = 0, та визначити решту змінних:
тобто Х* = (0; 5/3; 2/3), min Z = 1 0 + 2 5/3 + 2 2/3 = 14/3.
Умова min Z = max F = 14/3 виконується, і тому Х* = (0; 5/3; 2/3); Y* = (– 2/3; 4/3) є оптимальними планами відповідно прямої та двоїстої задач.