
- •1.Моделювання. Визначення і основні поняття.
- •2.Поняття моделі та форми існування моделей.
- •3.Мета застосування моделювання та способи її досягнення.
- •4.Види моделювання.
- •5.Фізичне моделювання.
- •6.Математичне моделювання.
- •7. Макетне моделювання.
- •8.Аналогове моделювання.
- •9.Ситуаційне моделювання.
- •10.Способи використання математичних моделей.
- •11.Визначення імітаційної моделі та її характерні особливості.
- •12. Що входить в поняття імітаційної моделі як інструмента дослідження складних систем?
- •13. Основні напрямки використання машинної імітації.
- •15. Поняття машинної імітації (імітаційного моделювання).
- •16. Переваги та вади машинної імітації.
- •17.Класифікація методів імітаційного моделювання.
- •18. Імітація еволюційних процесів у динамічних моделях.
- •19. Загальна схема і цілі машинної імітації.
- •20. Програмна реалізація імітаційних моделей.
- •21. Мови імітаційного моделювання.
- •22. Імітаційна модель обчислювальної системи з відмовами (табличний спосіб реалізації)
- •23. Імітаційна модель обчислювальної системи з чергою (табличний спосіб реалізації).
- •24. Імітаційна модель обчислювальної системи з відмовами (комбінований спосіб реалізації).
- •25. Імітаційна модель обчислювальної системи з чергою (комбінований спосіб реалізації).
- •26. Імітаційна модель обчислювальної системи з відмовами (алгоритм програмної реалізації).
- •27. Імітаційна модель обчислювальної системи з чергою (алгоритм програмної реалізації).
- •28. Імітаційна модель обчислювальної системи з чергою (реалізація процедурно-орієнтованими засобами мови програмування). Визначаємо змінні
- •29. Імітаційна модель обчислювальної системи з відмовами (реалізація процедурно-орієнтованими засобами мови програмування). Визначаємо змінні
- •30. Основні етапи побудови імітаційної моделі.
- •31. Gpss-програма імітаційної моделі обчислювальної системи з відмовами.
- •32. Gpss-програма імітаційної моделі обчислювальної системи з чергою.
- •30 Queue qeom *стати в чергу
- •30 Queue qeom *стати в чергу
- •33. Верхній і середній рівень представлення в системі gpss імітаційної моделі телефонної станції.
- •2. Середній рівень
- •34. Gpss-програма імітаційної моделі телефонної станції.
- •35. Імітаційна модель керування запасами: сутність оптимального керування запасами.
- •36. Імітаційна модель керування запасами: система постачання.
- •37. Імітаційна модель керування запасами: попит на предмети постачання та система поповнення запасів.
- •38. Імітаційна модель керування запасами: вартісні функції витрат.
- •39. Імітаційна модель керування запасами: обмеження, що застосовуються до запасів, і стратегії (політики) керування запасами.
- •40. Імітаційна модель керування запасами: статична детермінована модель.
- •41. Керування багатопродуктовими запасами: основні передумови та економіко-математична модель.
- •42. Імітаційна модель керування запасами: опис концептуальної моделі (основні передумови).
- •43. Імітаційна модель керування запасами: схема алгоритму.
- •44. Визначення, характерні особливості та сфера використання методу Монте-Карло.
- •45. Основні етапи методу статистичних випробувань
- •46. Обчислення означеного інтегралу методом Монте-Карло (табличний спосіб реалізації).
- •47. Обчислення означеного інтегралу методом Монте-Карло (реалізація процедурно-орієнтованими засобами мови програмування).
- •48. Методи випадкового пошуку при вирішенні оптимізаційних задач. Характерні особливості, переваги та недоліки.
- •49. Чисто випадковий пошук і його ефективність.
- •50. Алгоритм чисто випадкового пошуку при вирішенні задачі математичного програмування без обмежень.
- •51. Вирішення задачі нелінійного програмування без обмежень методом Монте-Карло (табличний спосіб реалізації чисто випадкового пошуку).
- •52. Програмна реалізація алгоритму чисто випадкового пошуку при вирішенні задачі математичного програмування без обмежень.
- •53. Модель вибору технологічного процесу виготовлення виробів (табличний спосіб реалізації чисто випадкового методу).
- •54. Алгоритм чисто випадкового пошуку при виборі технологічного процесу виготовлення виробів.
- •55. Програмна реалізація алгоритму чисто випадкового пошуку при виборі технологічного процесу виготовлення виробів.
- •56. Направлений випадковий пошук. Його переваги, недоліки та способи покращення збіжності.
- •57. Алгоритм направленого випадкового пошуку при вирішенні задачі математичного програмування без обмежень.
- •58. Вирішення задачі нелінійного програмування без обмежень методом Монте-Карло (табличний спосіб реалізації направленого випадкового пошуку).
- •59. Програмна реалізація алгоритму направленого випадкового пошуку при вирішенні задачі математичного програмування без обмежень).
- •60. Модель вибору технологічного процесу виготовлення виробів (табличний спосіб реалізації направленого випадкового методу).
- •61. Алгоритм направленого випадкового пошуку при виборі технологічного процесу виготовлення виробів.
- •62. Програмна реалізація алгоритму направленого випадкового пошуку при виборі технологічного процесу виготовлення виробів.
- •63. Точність оцінки ймовірності за допомогою відносної частоти.
- •64. Рівномірна випадкова послідовність чисел (рвп [0,1]).
- •65. Табличний спосіб одержання рвп [0,1].
- •66. Фізичні генератори рвп [0,1].
- •67. Програмні датчики рвп [0,1].
- •68. Перевірка якості випадкових чисел.
- •69. Схема випробувань за "жеребком" (свж).
- •70. Перший спосіб використання свж.
- •71. Другий спосіб використання свж.
- •72. Стандартний метод імітації дискретно-розподілених випадкових величин.
- •73. Спеціальні методи імітації дискретних розподілень.
- •74. Стандартний метод імітації неперервних випадкових величин.
- •75. Приклади застосування стандартного методу імітації неперервних випадкових величин.
- •76. Метод добору (відбраковки).
- •77. Наближене формування розподілів.
- •78. Генерування нормально розподілених випадкових чисел: використання центральної граничної теореми (цгт).
- •79. Генерування нормально розподілених випадкових чисел: метод Бокса-Маллера.
- •80. Генерування нормально розподілених випадкових чисел: метод Марсальї-Брея.
- •81. Основні задачі й поняття планування імітаційних експериментів.
- •82. Апроксимуючий поліном фукції відгуку.
- •83. Дворівнева система вимірювання факторів.
- •84. Повний факторний план (експеримент) і його властивості.
- •85. Дробовий факторний план (експеримент) і його властивості.
- •86. Лінійна апроксимація функції відгуку.
- •87. Одержання апроксимуючого полінома другого ступеня.
- •88. Композиційні плани.
- •89. Ортогональний центральний композиційний план.
- •90. Рототабельний композиційний план. (ркп)
- •91. Статистична перевірка однорідності дисперсіїй.
- •92. Статистична перевірка значущості коефіцієнтів регресії.
- •93. Статистична перевірка адекватності моделі.
- •94. Планування експерименту під час дослідження системи.
- •95. Перший спосіб пошуку екстремуму функції відгуку.
- •96. Загальна схема методу Бокса-Уїлсона.
- •97. Рух у напрямку крутого сходження (спаду).
37. Імітаційна модель керування запасами: попит на предмети постачання та система поповнення запасів.
Попит на предмети постачання визначається поточними потребами виробництва і може поділятися на такі групи: 1. стаціонарний або нестаціонарний; 2. детермінований або стохастичний; 3. неперервно або дискретно розподілений; 4. залежний від попиту на інші номенклатури або незалежний.
Поповнення запасів характеризується обсягом поставки і часом затримки прибуття поставки щодо моменту подачі замовлення. За обсягом поставка може дорівнювати замовленій або бути випадковою величиною, параметри функції розподілу якої залежать в загальному випадку від замовлення. У реальних ситуаціях завжди відбувається затримка прибуття замовлених матеріалів. Проте залежно від впливу цієї затримки на організацію постачання нею можна знехтувати (миттєва поставка), вважати її фіксованою або випадковою величиною з відомим законом розподілу.
38. Імітаційна модель керування запасами: вартісні функції витрат.
Витрати на організацію постачання складаються з трьох компонентів: витрат на зберігання матеріалів на складі; витрат на організацію поставок; витрат на штрафи через нестачу (дефіцит) необхідних ресурсів. Сукупність усіх витрат у формалізованому вигляді використовується як цільова функція в моделях керування запасами.
Вартість зберігання матеріальних ресурсів, яка здебільшого зростає прямо пропорційно до вартості матеріалів, що становлять запас, і терміну їх зберігання, на відміну від інших витрат зумовлює необхідність скорочення запасів. Така необхідність є наслідком дії двох вартісних факторів: витрат через зв’язування (омертвляння) обігових коштів у запасах; витрат, зумовлених фізичним зберіганням запасів. Витрати першого типу, які мають деякою мірою абстрактний характер і породжуються потенційно втраченою вигодою, що може бути отримана від обороту грошових засобів, ураховуються практично в усіх моделях керування запасами. Математично вони виражаються функцією, прямо пропорційною до середньої вартості запасу і терміну його існування. При розрахунках витрат другого типу необхідно враховувати шість складових витрат: 1. Плата за складське приміщення. Математично цей компонент витрат є прямо пропорційною функцією від величини запасу і часу його існування. 2. Витрати на облік та адміністративні витрати. 3. Витрати на складські операції. 4. Витрати від псування матеріалів, що утворюють запаси. У будь-якому з цих випадків витрати являють собою лінійну функцію величини запасу і часу його існування. 5. Витрати через утворення надмірних запасів. Математично цей компонент витрат виражається лінійною функцією від залишку запасу на кінець періоду планування. 6. Витрати через моральний знос. Математично виражаються функцією, яка дорівнює величині залишку запасу на кінець періоду планування, помноженого на різницю між початковою ціною одиниці продукції і її значенням після зниження ціни. Отже, витрати на зберігання як функція від величини запасу в загальному випадку мають три складові: постійну величину; величину, пропорційну до середньої величини запасу і часу його існування; величину, пропорційну до залишку матеріалу, що утворює запас, на кінець періоду планування.