Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EMM---5.doc
Скачиваний:
5
Добавлен:
16.04.2019
Размер:
4.89 Mб
Скачать

40 Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.

Задачі цілочислового програмування – це особливий вид оптимізаційних задач в якому змінні набувають тільки цілих значень. До цілочислового програмування належать також задачі оптимізації, в яких змінні набувають лише двох значень-0 або 1 (бінарні змінні)

Задача планування виробничої лінії. Розглядається процес функціонування виробничої лінії. Відома схема, яка зображає послідовність робіт для виготовлення k видів продукції . Відомі також: aj — тривалість виконання j-ї операції ;  — термін для k-го виробу, до якого необхідно завершити операцію j; хj — момент початку j-ї операції; t — тривалість виконання всіх операцій. Допускається, що в будь-який момент на верстаті виконується тільки одна операція.

Задача з постійними елементами витрат. Відомо, що витрати на виготовлення будь-якої продукції складаються з двох частин: постійних та змінних витрат.

Задача про призначення. Ця задача зводиться до транспортної і може бути розв’язана одним з відомих методів знаходження оптимального плану транспортної задачі. Проте такий вид задач належить до задач цілочислового програмування, оскільки їх змінні є бульовими і оптимальний план може бути знайденим також методами цілочислового програмування.

41. Геометрична інтерпретація задачі цілочислового програмування.

Найпростішим з них є знаходження оптимального розв’язку задачі як такої, що має лише неперервні змінні, з дальшим їх округленням. Такий підхід є виправ­даним тоді, коли змінні в оптимальному плані набувають досить великих значень у зіставленні їх з одиницями вимірюванняСкажімо, множина допустимих розв’язків деякої нецілочислової задачі лінійного програмування має вигляд, зображений на рис. 6.1

Максимальне значення функ­ціонала для даної задачі знаходиться в точці В. Округлення дасть таке значення оптимального плану (точка D на рис. 6.1). Очевидно, що точка D не може бути розв’язком задачі, оскільки вона не належить множині допустимих роз­в’язків (чотирикутник ОАВС)

Отже, для розглянутого на рис. 6.1 випадку множина допустимих планів складається з дев’яти точок (рис. 6.2), які утворені перетинами сім’ї прямих, що паралельні осям Ох1 та 2 і проходять через точки з цілими координатами 0, 1, 2.

Очевидно, особливість геометричної інтерпретації цілочислової задачі у зіставленні зі звичайною задачею лінійного програмування полягає лише у визначенні множини допустимих розв’язків. Областю допустимих розв’язків загальної задачі лінійного програмування є опуклий багатогранник, а вимога цілочисловості розв’язку приводить до такої множини допустимих розв’язків, яка є дискретною і утворюється тільки з окремих точок.

42. Метод Гоморі.

Розглянемо алгоритм, запропонований Гоморі, для розв’язування повністю цілочислової задачі лінійного програмування, що ґрунтується на використанні симплексного методу і передбачає застосування досить простого способу побудови правильного відтинання.

Нехай маємо задачу цілочислового програмування:

(6.5)

за умов: , (6.6)

, (6.7)

— цілі числа . (6.8)

Допустимо, що параметри — цілі числа.

Не враховуючи умови цілочисловості, знаходимо розв’язок задачі (6.5)—(6.7) симплексним методом. Нехай розв’язок існує і міститься в симплексній таблиці.

Розглянемо довільний оптимальний план задачі (6.5) —(6.7). Виразимо в цьому плані базисну змінну через вільні змінні:

. (6.9)

Виразимо коефіцієнти при змінних даного рівняння у вигляді суми їх цілої та дробової частин. Введемо позначення: — ціла частина числа , — дробова частина числа 1. Отримаємо:

, (6.10)

або

. (6.11)

Отже, рівняння (6.11) виконується для будь-якого допустимого плану задачі (6.5)—(6.7). Допустимо тепер, що розглянутий план є цілочисловим оптимальним планом задачі. Тоді ліва частина рівняння (6.11) складається лише з цілих чисел і є цілочисловим виразом. Отже, права його частина також є цілим числом і справджується рівність:

, (6.12)

де N — деяке ціле число.

Величина N не може бути від’ємною. Якщо б , то з рівняння (6.12) приходимо до нерівності:

.

Звідки . Тобто це означало б, що дробова частина перевищує одиницю, що неможливо. У такий спосіб доведено, що число N є невід’ємним.

Якщо від лівої частини рівняння (6.12) відняти деяке невід’ємне число, то приходимо до нерівності:

, (6.13)

яка виконується за допущенням для будь-якого цілочислового плану задачі (6.5)—(6.7). У такий спосіб виявилося, що нерівність (6.13) є шуканим правильним відтинанням.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]