Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ ПО ПРОЕКТИВНОЙ ГЕОМЕТРИИ, МАРТ 13 2010....doc
Скачиваний:
217
Добавлен:
04.12.2018
Размер:
4.89 Mб
Скачать

§3. Модели проективного пространства

Рассмотрим математические примеры, подтверждающие корректность определения проективного пространства.

Говорят, что модель проективного пространства Pn обозначена, если Pn задано как множество и построено отображение : (Vn+1\{0}) Pn, удовлетворяющее условиям 1 и 2 определения Г. Вейля.

Проективную геометрию можно изучать в любой из ее реализаций.

1. Рассмотрим арифметическую проективную плоскость. Введем однородные координаты. В действительном векторном пространстве V3 выберем базис e1, e2, e3, тогда любой вектор mV3 однозначно раскладывается по базису m1e1+m2e2+m3e3. Можно рассмотреть арифметическое векторное пространство всех упорядоченных троек действительных чисел {[m1, m2, m3]}, которое также будем обозначать V3. Во множестве P2 точкой считаем упорядоченную тройку действительных чисел с точностью до ненулевого множителя. Например, (2,–1, 7) = (–4, 2, ). Построим отображение f: (V3\{0})P2; [m1, m2, m3](m1, m2, m3). Условия 1 и 2 определения Г. Вейля непосредственно проверяются.

Замечание. Множество P2 является фактор множеством по отношению эквивалентности: две тройки действительных чисел эквивалентны, если одну из другой можно получить умножением на ненулевой множитель. Нулевая тройка не рассматривается.-

2 . Рассмотрим действительное (n+1)-мерное аффинное (евклидово) пространство, в котором фиксируем некоторую точку О. Точкой n-мерного пространства Pn будем считать прямую, проходящую через точку О. Ненулевой вектор порождает единственную прямую, коллинеарную ему и проходящую через точку O.

Аффинное пространство (n+1) измерений порождает векторное пространство Vn+1 (каждый вектор есть направленный отрезок с началом в точке О). Имеем отображение т.е. построено конкретное множество Pn и конкретное отображение

f :(Vn+1\{0}) Pn.

Для каждой прямой, проходящей через точку О, существует ненулевой вектор с началом в точке О, порождающий эту прямую. (На прямой достаточно взять точку М, отличную от точки О; вектор порождает эту прямую). Таким образом, f – сюръекция. Коллинеарные векторы порождают одну и ту же прямую, проходящую через точку О; обратно, любая прямая порождается коллинеарными векторами. Итак, связка прямых, проходящих через фиксированную точку (n+1)-мерного аффинного пространства, является моделью n – мерного проективного пространства.

3. Расширенная прямая. К аффинной прямой добавим еще одну точку, которую называем бесконечно удаленной, или несобственной. Приведем более подробное разъяснение.

Вложим аффинную прямую d в аффинную плоскость. Фиксируем точку О вне прямой. Как мы уже знаем, связка прямых, проходящих через точку О, есть модель проективной прямой P1. Все прямые, проходящие через точку О, за исключением одной единственной, пересекают прямую d. Будем считать, что две параллельные в обычном смысле прямые, пересекаются в бесконечно удаленной точке Расширенной прямой называем прямую d , пополненную несобственной точкой .

4. Р асширенная плоскость. Каждую прямую аффинной плоскости пополняем несобственной точкой, так что пучок параллельных прямых пополняется одной бесконечно удаленной точкой. Если прямые не параллельны в обычном смысле, то они пополняются различными бесконечно удаленными точками. Все несобственные точки образуют несобственную прямую.

После окончания процедуры пополнения все точки и все прямые считаем равноправными.