Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лабораторки по информатике.doc
Скачиваний:
16
Добавлен:
06.11.2018
Размер:
9.06 Mб
Скачать

Федеральное государственное образовательное учреждение

высшего профессионального образования

«КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Н.Д. Бобарыкин, ВМ. Смертин, Е.Н. Графова, Р.Л. Седов

ИНФОРМАТИКА И МАТЕМАТИЧЕСКОЕ

МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНЫХ СИСТЕМ

Учебное пособие для инженерно-технических специальностей

высших учебных заведений

Калининград

Издательство ФГОУ ВПО «КГТУ»

2009

УДК 551.510.001.57(06)

Бобарыкин Н.Д., Смертин В.М., Графова Е.Н.,Седов Р.Л. Информатика и математическое моделирование функциональных систем. Учебное пособие.- Калининград: Изд-во ФГОУ ВПО «КГТУ», 2009.- 172 с.

На основе обобщения опыта проведения теоретических и практических занятий со студентами инженерно-технических специальностей по курсам «Информатика» и «Математическое моделирование на ПЭВМ» приводятся образцы выполнения характерных лабораторных работ по этим дисциплинам, а также излагаются вопросы и методы их решения, возникающие в большинстве задач математического моделирования функциональных систем.

Учебное пособие предназначено для студентов и специалистов, занимающихся информатикой и математическим моделированием, включая численные методы решения дифференциальных уравнений.

Рис. 48, табл. 17, список лит. – 48 наименований.

РЕЦЕНЗЕНТЫ - Сердобинцев С. П., д.т.н., профессор, заведующий кафедрой

автоматизации производственных процессов ФГОУ ВПО

«Калининградский государственный технический

университет»

Латышев К. С., д.ф.- м.н., профессор, заведующий кафедрой

вычислительной математики Российского государственного

университета им. И. Канта.

Учебное пособие рекомендовано к печати методическим советом факультета фундаментальной подготовки ФГОУ ВПО «Калининградский государственный технический университет» 1 июня 2009 г., протокол № 7.

©ФГОУ ВПО Калининградский государственный технический университет, 2009 г.

 Бобарыкин Н.Д., Смертин В.М., Графова Е.Н, Седов Р.Л., 2009 г.

Николай Дмитриевич Бобарыкин, Владимир Михайлович Смертин,

Елена Николаевна Графова, Роман Леонидович Седов

ИНФОРМАТИКА И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФУНКЦИОНАЛЬНЫХ СИСТЕМ

Редактор Л.И. Полищук

Подписано в печать 30.10.2009 г. Формат 60х84 (1/16). Заказ

Тираж 70 экз. Объем 10,8 п. л.; 7,8 уч.-изд. л.

Цена договорная

Издательство ФГОУ ВПО «КГТУ». Калининград, Советский проспект, 1

Оглавление

Введение ……………………….………………………………….......................... 6

1. Программирование задач на языке BASIC ………….………………………9

Лабораторная работа № 1.1. Программирование линейных вычислительных

процессов ………………………………………………………………………....9

Лабораторная работа № 1.2. Программирование разветвляющихся

алгоритмов ……………………………………………………………………....14

Лабораторная работа № 1.3. Определённые циклы ..................................... ...18

Лабораторная работа № 1.4. Определённые циклы. Суммирование членов

функционального ряда ……………………….....................................................21

Лабораторная работа № 1.5.Файлы прямого и последовательного доступа..23

Лабораторная работа № 1.6. Программирование итерационных

вычислительных процессов ..............................................................................26

Лабораторная работа № 1.7. Вычисление на ПЭВМ сумм бесконечных

числовых рядов с заданной точностью ….......................................................30

Лабораторная работа № 1.8. Формирование и обработка одномерных

массивов ..............................................................................................................34

Лабораторная работа № 1.9. Формирование двумерных массивов и

выполнение операций с матричными элементами .......................................38

Лабораторная работа № 1.10. Программирование сложных программ

с использованием подпрограмм .....................................................................44

Лабораторная работа № 1.11. Программирование цепочек

текстовых переменных ...................................................................................52

Литература к главе 1 .........................................................................................55

2. Программирование задач в системе MATH CAD ……....………………...56

Лабораторная работа № 2.1. Решение систем линейных алгебраических

уравнений методом обратной матрицы ..…………….………………………56

Лабораторная работа № 2.2. Решение нелинейного уравнения

графическим методом …………………………………………………………59

Лабораторная работа № 2.3. Решение нелинейного уравнения методом

простых итераций …………………………………………………………… ..62

Лабораторная работа № 2.4. Решение нелинейного уравнения методом

касательных ………..………………………………………………………… 70

Лабораторная работа № 2.5. Решение систем нелинейных уравнений

графическим методом …………………………………………………………75

Лабораторная работа № 2.6. Решение систем нелинейных уравнений

методом простых итераций……………………………………………………80

Лабораторная работа № 2.7. Численное интегрирование: метод

прямоугольников и трапеций, формула Симпсона…………………………..85

Лабораторная работа № 2.8. Численное решение обыкновенного

дифференциального уравнения методом Эйлера и Рунге-Кутта …………..88

Лабораторная работа № 2.9. Численное решение систем обыкновенных

дифференциальных уравнений методом Эйлера .…..……….…………….....92

Литература к главе 2 ...........................................................................................94

3. Математическое моделирование на ПЭВМ ……….………….…………...95

3.I. Системы сосредоточенными массами…………………………….………95

3.1.1. Математическое моделирование теплообмена для тел

сосредоточенных масс с окружающей средой……………….……………95

3.1.2. Собственные колебания………………………………………………98

3.1.3. Математическая модель стабильности позвоночника…………….108

3.2. Системы с распределенными параметрами……………………………...123

3.2.1. Математическое моделирование процесса переноса частиц……..123

3.2.2. Математическое моделирование процесса прерванного

посола рыбы………………………………………………………………...130

3.2.3. Моделирование процесса переноса частиц на основе

гиперболической системы уравнений……………………………………138

3.2.4. Математическое моделирование нестационарного

двумерного процесса переноса частиц (теплопереноса)………………..144

3.3. Повышение порядка точности аппроксимации

дифференциальных уравнений……………………………………………151

3.3.1. Повышение порядка точности аппроксимации обыкновенных

дифференциальных уравнений………………..…………………………..151

3.3.2. Повышение порядка точности аппроксимации

дифференциальных уравнений гиперболического типа…………………155

3.4. Интерполяция функций……………………………………………………159

3.4.1. Линейная интерполяция……………………………………………. 161

3.4.2. Квадратичная интерполяция………………………………………...161

3.4.3. Интерполяционная формула Лагранжа……………………………...162

3.4.4. Сплайны……………………………………………………………….163

3.4.5. Алгоритм решения обратных задач по заданным показателям

качества ……………………………………………………………………...164

Литература к главе 3 ……………………………..…………………………167