
- •Contents
- •Preface to the second edition
- •Preface to the first edition
- •1 Special relativity
- •1.2 Definition of an inertial observer in SR
- •1.4 Spacetime diagrams
- •1.6 Invariance of the interval
- •1.8 Particularly important results
- •Time dilation
- •Lorentz contraction
- •Conventions
- •Failure of relativity?
- •1.9 The Lorentz transformation
- •1.11 Paradoxes and physical intuition
- •The problem
- •Brief solution
- •2 Vector analysis in special relativity
- •Transformation of basis vectors
- •Inverse transformations
- •2.3 The four-velocity
- •2.4 The four-momentum
- •Conservation of four-momentum
- •Scalar product of two vectors
- •Four-velocity and acceleration as derivatives
- •Energy and momentum
- •2.7 Photons
- •No four-velocity
- •Four-momentum
- •Zero rest-mass particles
- •3 Tensor analysis in special relativity
- •Components of a tensor
- •General properties
- •Notation for derivatives
- •Components
- •Symmetries
- •Circular reasoning?
- •Mixed components of metric
- •Metric and nonmetric vector algebras
- •3.10 Exercises
- •4 Perfect fluids in special relativity
- •The number density n
- •The flux across a surface
- •Number density as a timelike flux
- •The flux across the surface
- •4.4 Dust again: the stress–energy tensor
- •Energy density
- •4.5 General fluids
- •Definition of macroscopic quantities
- •First law of thermodynamics
- •The general stress–energy tensor
- •The spatial components of T, T ij
- •Conservation of energy–momentum
- •Conservation of particles
- •No heat conduction
- •No viscosity
- •Form of T
- •The conservation laws
- •4.8 Gauss’ law
- •4.10 Exercises
- •5 Preface to curvature
- •The gravitational redshift experiment
- •Nonexistence of a Lorentz frame at rest on Earth
- •The principle of equivalence
- •The redshift experiment again
- •Local inertial frames
- •Tidal forces
- •The role of curvature
- •Metric tensor
- •5.3 Tensor calculus in polar coordinates
- •Derivatives of basis vectors
- •Derivatives of general vectors
- •The covariant derivative
- •Divergence and Laplacian
- •5.4 Christoffel symbols and the metric
- •Calculating the Christoffel symbols from the metric
- •5.5 Noncoordinate bases
- •Polar coordinate basis
- •Polar unit basis
- •General remarks on noncoordinate bases
- •Noncoordinate bases in this book
- •5.8 Exercises
- •6 Curved manifolds
- •Differential structure
- •Proof of the local-flatness theorem
- •Geodesics
- •6.5 The curvature tensor
- •Geodesic deviation
- •The Ricci tensor
- •The Einstein tensor
- •6.7 Curvature in perspective
- •7 Physics in a curved spacetime
- •7.2 Physics in slightly curved spacetimes
- •7.3 Curved intuition
- •7.6 Exercises
- •8 The Einstein field equations
- •Geometrized units
- •8.2 Einstein’s equations
- •8.3 Einstein’s equations for weak gravitational fields
- •Nearly Lorentz coordinate systems
- •Gauge transformations
- •Riemann tensor
- •Weak-field Einstein equations
- •Newtonian limit
- •The far field of stationary relativistic sources
- •Definition of the mass of a relativistic body
- •8.5 Further reading
- •9 Gravitational radiation
- •The effect of waves on free particles
- •Measuring the stretching of space
- •Polarization of gravitational waves
- •An exact plane wave
- •9.2 The detection of gravitational waves
- •General considerations
- •Measuring distances with light
- •Beam detectors
- •Interferometer observations
- •9.3 The generation of gravitational waves
- •Simple estimates
- •Slow motion wave generation
- •Exact solution of the wave equation
- •Preview
- •Energy lost by a radiating system
- •Overview
- •Binary systems
- •Spinning neutron stars
- •9.6 Further reading
- •10 Spherical solutions for stars
- •The metric
- •Physical interpretation of metric terms
- •The Einstein tensor
- •Equation of state
- •Equations of motion
- •Einstein equations
- •Schwarzschild metric
- •Generality of the metric
- •10.5 The interior structure of the star
- •The structure of Newtonian stars
- •Buchdahl’s interior solution
- •10.7 Realistic stars and gravitational collapse
- •Buchdahl’s theorem
- •Quantum mechanical pressure
- •White dwarfs
- •Neutron stars
- •10.9 Exercises
- •11 Schwarzschild geometry and black holes
- •Black holes in Newtonian gravity
- •Conserved quantities
- •Perihelion shift
- •Post-Newtonian gravity
- •Gravitational deflection of light
- •Gravitational lensing
- •Coordinate singularities
- •Inside r = 2M
- •Coordinate systems
- •Kruskal–Szekeres coordinates
- •Formation of black holes in general
- •General properties of black holes
- •Kerr black hole
- •Dragging of inertial frames
- •Ergoregion
- •The Kerr horizon
- •Equatorial photon motion in the Kerr metric
- •The Penrose process
- •Supermassive black holes
- •Dynamical black holes
- •11.6 Further reading
- •12 Cosmology
- •The universe in the large
- •The cosmological arena
- •12.2 Cosmological kinematics: observing the expanding universe
- •Homogeneity and isotropy of the universe
- •Models of the universe: the cosmological principle
- •Cosmological metrics
- •Cosmological redshift as a distance measure
- •The universe is accelerating!
- •12.3 Cosmological dynamics: understanding the expanding universe
- •Critical density and the parameters of our universe
- •12.4 Physical cosmology: the evolution of the universe we observe
- •Dark matter and galaxy formation: the universe after decoupling
- •The early universe: fundamental physics meets cosmology
- •12.5 Further reading
- •Appendix A Summary of linear algebra
- •Vector space
- •References
- •Index

8 |
The Einstein field equations |
|
|
8.1 P u r p o s e a n d j u s t i fi c a t i o n o f t h e fi e l d e q u a t i o n s
Having decided upon a description of gravity and its action on matter that is based on the idea of a curved manifold with a metric, we must now complete the theory by postulating a law which shows how the sources of the gravitational field determine the metric. The Newtonian analog is
2φ = 4π Gρ, |
(8.1) |
where ρ is the density of mass. Its solution for a point particle of mass m is (see Exer. 1, § 8.6).
φ = − |
Gm |
, |
(8.2) |
r |
which is dimensionless in units where c = 1.
The source of the gravitational field in Newton’s theory is the mass density. In our relativistic theory of gravity the source must be related to this, but it must be a relativistically meaningful concept, which ‘mass’ alone is not. An obvious relativistic generalization is the total energy, including rest mass. In the MCRF of a fluid element, we have denoted the density of total energy by ρ in Ch. 4. So we might be tempted to use this ρ as the source of the relativistic gravitational field. This would not be very satisfactory, however, because ρ is the energy density as measured by only one observer, the MCRF. Other observers measure the energy density to be the component T00 in their own reference frames. If we were to use ρ as the source of the field, we would be saying that one class of observers is preferred above all others, namely those for whom ρ is the energy density. This point of view is at variance with the approach we adopted in the previous chapter, where we stressed that we must allow all coordinate systems on an equal footing. So we shall reject ρ as the source and instead insist that the generalization of Newton’s mass density should be T00. But again, if T00 alone were the source, we would have to specify a frame in which T00 was evaluated. An invariant theory can avoid introducing preferred coordinate systems by using the whole of the stress–energy tensor T as the source of the gravitational field. The generalization of Eq. (8.1) to relativity would then have the form
O(g) = kT, |
(8.3) |
where k is a constant (as yet undetermined) and O is a differential operator on the metric tensor g, which we have already seen in Eq. (7.8) is the generalization of φ. There will thus

185 |
|
8.1 Purpose and justification of the field equations |
|
|
|
|
|
|
be ten differential equations, one for each independent component of Eq. (8.3), in place of the single one, Eq. (8.1). (Recall that T is symmetric, so it has only ten independent components, not 16.)
By analogy with Eq. (8.1), we should look for a second-order differential operator O that
produces a tensor of rank |
|
2 |
, since in Eq. (8.3) it is equated to the |
2 |
tensor T. In other |
|||||||||
|
|
|
|
|
|
|
0 |
|
|
|
0 |
|
|
|
words, |
|
O |
αβ |
|
must be the |
components of a |
2 tensor and must be combinations of g |
μν,λσ |
, |
|||||
{ |
|
} |
|
|
|
|
0 |
|
|
|||||
|
|
|
|
|
|
|
the Ricci tensor Rαβ satisfies these conditions. In |
|||||||
gμν,λ, and gμν . It is clear from Ch. 6 that |
|
|
|
|
|
|
||||||||
fact, any tensor of the form |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
Oαβ = Rαβ + μgαβ R + gαβ |
|
|
(8.4) |
satisfies these conditions, if μ and are constants. To determine μ we use a property of Tαβ , which we have not yet used, namely that the Einstein equivalence principle demands local conservation of energy and momentum (Eq. (7.6))
Tαβ ;β = 0. |
|
This equation must be true for any metric tensor. Then Eq. (8.3) implies that |
|
Oαβ ;β = 0, |
(8.5) |
which again must be true for any metric tensor. Since gαβ ;μ = 0, we now find, from Eq. (8.4)
(Rαβ + μgαβ R);β = 0. |
(8.6) |
By comparing this with Eq. (6.98), we see that we must have μ = − 21 |
if Eq. (8.6) |
is to be an identity for arbitrary gαβ . So we are led by this chain of argument to the equation
Gαβ + gαβ = kTαβ , |
(8.7) |
with undetermined constants and k. In index-free form, this is
G + g = kT. |
(8.8) |
These are called the field equations of GR, or Einstein’s field equations. We shall see below that we can determine the constant k by demanding that Newton’s gravitational field equation comes out right, but that remains arbitrary.
But first let us summarize where we have got to. We have been led to Eq. (8.7) by asking for equations that (i) resemble but generalize Eq. (8.1), (ii) introduce no preferred coordinate system, and (iii) guarantee local conservation of energy–momentum for any metric tensor. Eq. (8.7) is not the only equation which satisfies (i)–(iii). Many alternatives

186 |
The Einstein field equations |
have been proposed, beginning even before Einstein arrived at equations like Eq. (8.7). In recent years, when technology has made it possible to test Einstein’s equations fairly precisely, even in the weak gravity of the solar system, many new alternative theories have been proposed. Some have even been designed to agree with Einstein’s predictions at the precision of foreseeable solar-system experiments, differing only for much stronger fields. GR’s competitors are, however, invariably more complicated than Einstein’s equations themselves, and on simply aesthetic grounds are unlikely to attract much attention from physicists unless Einstein’s equations are eventually found to conflict with some experiment. A number of the competing theories and the increasingly accurate experimental tests which have been used to eliminate them since the 1960s are discussed in Misner et al. (1973), Will (1993), and Will (2006). (We will study two classical tests in Ch. 11.) Einstein’s equations have stood up extremely well to these tests, so we will not discuss any alternative theories in this book. In this we are in the good company of the Nobel-Prize-winning astrophysicist S. Chandrasekhar (1980):
The element of controversy and doubt, that have continued to shroud the general theory of relativity to this day, derives precisely from this fact, namely that in the formulation of his theory Einstein incorporates aesthetic criteria; and every critic feels that he is entitled to his own differing aesthetic and philosophic criteria. Let me simpy say that I do not share these doubts; and I shall leave it at that.
Although Einstein’s theory is essentially unchallenged at the moment, there are still reasons for expecting that it is not the last word, and therefore for continuing to probe it experimentally. Einstein’s theory is, of course, not a quantum theory, and strong theoretical efforts are currently being made to formulate a consistent quantum theory of gravity. We expect that, at some level of experimental precision, there will be measurable quantum corrections to the theory, which might for example come in the form of extra fields coupled to the metric. The source of such a field might violate the Einstein equivalence principle. The field itself might carry an additional form of gravitational waves. In principle, any of the predictions of general relativity might be violated in some such theory. Precision experiments on gravitation could some day provide the essential clue needed to guide the theoretical development of a quantum theory of gravity. However, interesting as they might be, such considerations are outside the scope of this introduction. For the purposes of this book, we will not consider alternative theories any further.
Geometrized units
We have not determined the value of the constant k in Eq. (8.7), which plays the same role as 4π G in Eq. (8.1). Before discussing it below we will establish a more convenient set of units, namely those in which G = 1. Just as in SR where we found it convenient to choose units in which the fundamental constant c was set to unity, so in studies of gravity it is more natural to work in units where G has the value unity. A convenient conversion factor from SI units to these geometrized units (where c = G = 1) is