
- •Министерство образования Республики Беларусь
- •Введение
- •1 Электрические цепи постоянного тока
- •1.1 Основные понятия об электрической цепи
- •1.2 Основные законы электрических цепей
- •1.3 Расчет простых цепей постоянного тока
- •1.4 Расчет сложных цепей постоянного тока
- •1.4.1 Методика расчета сложной цепи с помощью непосредственного применения законов Кирхгофа
- •6 Решаем любым способом полученную систему относительно токов ветвей и определяем их.
- •1.4.2 Методика расчета цепи методом контурных токов
- •1.4.3 Метод межузлового напряжения
- •Пример 1.4. Расчёт сложной цепи методом межузлового напряжения
- •Рассчитываем проводимости всех ветвей:
- •Для определения межузлового напряжения используем выражение (1.20)
- •Потенциальная диаграмма
- •Контрольные вопросы
- •2 Электрические цепи переменного тока
- •2.1 Основные понятия об однофазном переменном токе
- •Полное сопротивление цепи переменного тока при последовательном соединении r, l и c
- •Полная мощность цепи переменного тока
- •2.2 Расчёт цепейпеременного тока
- •2.2.1 Применение комплексных чисел для расчета цепей переменного тока
- •Комплексным числом называют выражение вида
- •Аргумент этого числа
- •Вещественная часть
- •Для определения полной мощности на участке или во всей цепи используется выражение вида
- •Пример 2.1. Расчёт разветвлённой цепи переменного тока
- •Изображение напряжения на входе цепи в комплексной форме записи
- •Токи в ветвях после разветвления:
- •Падение напряжения на катушке
- •Суммарная реактивная мощность всех потребителей
- •2.3 Особенности трехфазных цепей
- •В комплексной форме записи выражения для фазных напряжений имеют вид:
- •2.3.1 Расчёт трёхфазных цепей
- •Трёхфазная активная мощность
- •Трёхфазная реактивная мощность
- •Трёхфазная полная мощность
- •Пример 2.2. Расчет трехфазной цепи при соединении потребителей звездой
- •Активная трехфазная мощность
- •Реактивная трехфазная мощность
- •Полная мощность
- •Пример 2.3. Расчёт трёхфазной цепи при соединении потребителей треугольником
- •3 Нелинейные электрические цепи
- •3.1 Нелинейные электрические цепи постоянного тока
- •3.1.1 Классификация нелинейных элементов
- •3.1.2 Методы расчета нелинейных цепей постоянного тока
- •Графический метод расчета неразветвлённой цепи с нелинейными элементами
- •Графический метод расчёта цепи с параллельным соединением нелинейных элементов
- •Графический метод расчета цепи со смешанным соединением нелинейных элементов
- •3.2 Нелинейные элементы электрической цепи переменного тока
- •Контрольные вопросы
- •4 Магнитные цепи
- •4.1 Основные понятия о магнитных цепях
- •4.2 Определение магнитодвижущей силы цепи
- •Эквивалентная расчётная схема заданной магнитной цепи изображена на рисунке 4.1.
- •Mагнитодвижущая сила f катушки
- •Величина электромагнитной силы fэм, действующей на проводник с током в воздушном зазоре,
- •4.3 Определение магнитной индукции в заданном сечении
- •Контрольные вопросы
- •5 Трансформаторы
- •5.1 Основные понятия о трансформаторах
- •5.2 Приведенный трансформатор и его схема замещения
- •5.3 Режимы работы трансформатора
- •Пример 3.1. Расчёт параметров трёхфазного трансформатора
- •Решение. Так как первичная обмотка соединена звездой, то фазное напряжение первичной обмотки
- •Линейный номинальный ток первичной обмотки
- •Активное сопротивление короткого замыкания
- •Контрольные вопросы
- •6 Асинхронные двигатели
- •6.1 Принцип действия асинхронного двигателя
- •6.2 Асинхронная машина при неподвижном роторе
- •6.3 Работа асинхронной машины при вращающемся роторе
- •6.4 Вращающий момент асинхронного двигателя
- •Пример 6.1. Расчёт параметров асинхронного трёхфазного двигателя с короткозамкнутым ротором
- •Контрольные вопросы
- •7 Выпрямители переменного тока
- •7.1 Основные понятия о выпрямителях
- •7.2 Однофазная схема выпрямления с нулевой точкой
- •Выпрямления с нулевой точкой
- •7.3 Однофазная мостовая схема выпрямления
- •7.4 Трехфазная схема выпрямления с нулевой точкой
- •Среднее значение тока диода
- •Из разложения в ряд Фурье напряжения на нагрузке следует, что амплитуда основной (третьей) гармоники
- •7.5 Трехфазная мостовая схема выпрямления
- •Среднее значение выпрямленного напряжения
- •Среднее значение тока диода
- •Действующее значение тока вторичной обмотки вентильного трансформатора, соединённой звездой,
- •Из выражения для напряжения на нагрузке следует, что амплитуда основной (шестой) гармоники
- •Коэффициент пульсации выпрямленного напряжения
- •Типовая мощность трансформатора
- •7.6 Фильтрация выпрямленного напряжения
- •Индуктивность дросселя в г-образной схеме фильтра можно определить из приближённого выражения
- •Контрольные вопросы
- •8 Задания на выполнение контрольных работ
- •8.1 Контрольная работа № 1 Задача № 1. Расчет линейной электрической цепи постоянного тока с одним источником электрической энергии
- •Задача № 2. Расчет сложной цепи постоянного тока с двумя узлами
- •Задача № 3. Расчет разветвленной линейной цепи постоянного тока с несколькими источниками электрической энергии
- •8.2 Контрольная работа № 2 Задача № 1. Расчёт неразветвлённой цепи однофазного синусоидального тока
- •Задача № 2. Расчёт разветвлённой цепи однофазного синусоидального тока
- •Задача № 3. Расчёт трёхфазной цепи
- •8.3 Контрольная работа № 3 Задача № 1. Расчёт параметров трансформатора
- •Задача № 2. Расчёт параметров трёхфазного асинхронного двигателя
- •Перечень пунктов задания, необходимых для формирования условия задачи:
- •8.4 Контрольная работа № 4
- •9 Основное содержание дисциплины «Электротехника и основы электроники»
- •9.1 Общие сведения о курсе и методические указания
- •По самостоятельной работе над ним
- •9.2 Контрольные вопросы для подготовки к сдаче теоретического курса
- •9.2.1 Вопросы к зачёту по дисциплине «Электротехника и основы электроники»
- •9.2.2 Вопросы для подготовки к экзамену по дисциплине «Электротехника и основы электроники»
- •Приложение a
- •Справочные таблицы
- •Список литературы
1.4 Расчет сложных цепей постоянного тока
В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей. Для определения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых напряжений.
Для проверки правильности вычисления токов необходимо составить баланс мощностей. Из закона сохранения энергии следует, что алгебраическая сумма мощностей всех источников питания цепи равна арифметической сумме мощностей всех потребителей.
Мощность источника питания равна произведению его ЭДС на величину тока, протекающего через данный источник. Если направление ЭДС и тока в источнике совпадают, то мощность получается положительной. В противном случае она отрицательна.
Мощность потребителя всегда положительна и равна произведению квадрата тока в потребителе на величину его сопротивления (1.3) .
Математически баланс мощностей можно записать в следующем виде:
,
(1.19)
где |
n |
– |
количество источников питания в цепи; |
|
m |
– |
количество потребителей. |
Если баланс мощностей соблюдается, то расчет токов выполнен правильно.
В процессе составления баланса мощностей можно выяснить, в каком режиме работает источник питания. Если его мощность положительна, то он отдает энергию во внешнюю цепь (например, как аккумулятор в режиме разряда). При отрицательном значении мощности источника последний потребляет энергию из цепи (аккумулятор в режиме заряда).
1.4.1 Методика расчета сложной цепи с помощью непосредственного применения законов Кирхгофа
1 Вычерчиваем принципиальную схему электрической цепи и обозначаем все её элементы.
2 Выявляем в данной цепи узлы, ветви и контуры.
3 Произвольно задаемся направлением тока в каждой ветви и обозначаем эти токи.
4 По первому закону Кирхгофа составляем узловые уравнения, число которых должно быть на единицу меньше количества всех узлов цепи. Для одного любого узла уравнение не составляется.
5 По второму закону Кирхгофа составляем уравнения, число которых равно разности между количеством неизвестных токов (числом ветвей) и количеством уравнений, составленных по первому закону. Для уравнений по второму закону Кирхгофа рекомендуется выбирать независимые контуры.
6 Решаем любым способом полученную систему относительно токов ветвей и определяем их.
Если в результате расчета некоторые токи имеют отрицательную величину, то это значит, что при произвольном выборе их направления допущена ошибка. Истинное направление отрицательных токов противоположно ранее принятому.
Пример 1.2. Расчёт сложной цепи с помощью законов Кирхгофа
В качестве примера рассмотрим расчет цепи, изображенной на рисунке 1.4, у которой Е1 = 24 В,Е2 = 12 В,r1 =r2 = 4 Ом,r3 = 1 Ом,r4 = 3 Ом.
Решение. При расчете с помощью непосредственного применения законов Кирхгофа по первому закону составляем одно уравнение, так как в цепи два узла. По второму закону составляем два уравнения, так как в схеме три неизвестных тока, а по первому закону было уже составлено одно уравнение. Таким образом, разница между числом неизвестных токов и числом уравнений по первому закону составляет два. Искомая система имеет вид:
После решения системы уравнений получаем: I1 = 3 А,I2 = 0A,I3 = – 3 А.
Отрицательный знак у третьего тока указывает, что при произвольном выборе направления этого тока мы ошиблись, истинное направление его, противоположно ранее принятому.
Правильность расчёта токов определяем с помощью баланса мощностей.
Для цепи на рисунке 1.4 имеем:
,
,
.
Баланс мощностей соблюдается, значит, расчет выполнен правильно.