
- •Министерство образования Республики Беларусь
- •Введение
- •1 Электрические цепи постоянного тока
- •1.1 Основные понятия об электрической цепи
- •1.2 Основные законы электрических цепей
- •1.3 Расчет простых цепей постоянного тока
- •1.4 Расчет сложных цепей постоянного тока
- •1.4.1 Методика расчета сложной цепи с помощью непосредственного применения законов Кирхгофа
- •6 Решаем любым способом полученную систему относительно токов ветвей и определяем их.
- •1.4.2 Методика расчета цепи методом контурных токов
- •1.4.3 Метод межузлового напряжения
- •Пример 1.4. Расчёт сложной цепи методом межузлового напряжения
- •Рассчитываем проводимости всех ветвей:
- •Для определения межузлового напряжения используем выражение (1.20)
- •Потенциальная диаграмма
- •Контрольные вопросы
- •2 Электрические цепи переменного тока
- •2.1 Основные понятия об однофазном переменном токе
- •Полное сопротивление цепи переменного тока при последовательном соединении r, l и c
- •Полная мощность цепи переменного тока
- •2.2 Расчёт цепейпеременного тока
- •2.2.1 Применение комплексных чисел для расчета цепей переменного тока
- •Комплексным числом называют выражение вида
- •Аргумент этого числа
- •Вещественная часть
- •Для определения полной мощности на участке или во всей цепи используется выражение вида
- •Пример 2.1. Расчёт разветвлённой цепи переменного тока
- •Изображение напряжения на входе цепи в комплексной форме записи
- •Токи в ветвях после разветвления:
- •Падение напряжения на катушке
- •Суммарная реактивная мощность всех потребителей
- •2.3 Особенности трехфазных цепей
- •В комплексной форме записи выражения для фазных напряжений имеют вид:
- •2.3.1 Расчёт трёхфазных цепей
- •Трёхфазная активная мощность
- •Трёхфазная реактивная мощность
- •Трёхфазная полная мощность
- •Пример 2.2. Расчет трехфазной цепи при соединении потребителей звездой
- •Активная трехфазная мощность
- •Реактивная трехфазная мощность
- •Полная мощность
- •Пример 2.3. Расчёт трёхфазной цепи при соединении потребителей треугольником
- •3 Нелинейные электрические цепи
- •3.1 Нелинейные электрические цепи постоянного тока
- •3.1.1 Классификация нелинейных элементов
- •3.1.2 Методы расчета нелинейных цепей постоянного тока
- •Графический метод расчета неразветвлённой цепи с нелинейными элементами
- •Графический метод расчёта цепи с параллельным соединением нелинейных элементов
- •Графический метод расчета цепи со смешанным соединением нелинейных элементов
- •3.2 Нелинейные элементы электрической цепи переменного тока
- •Контрольные вопросы
- •4 Магнитные цепи
- •4.1 Основные понятия о магнитных цепях
- •4.2 Определение магнитодвижущей силы цепи
- •Эквивалентная расчётная схема заданной магнитной цепи изображена на рисунке 4.1.
- •Mагнитодвижущая сила f катушки
- •Величина электромагнитной силы fэм, действующей на проводник с током в воздушном зазоре,
- •4.3 Определение магнитной индукции в заданном сечении
- •Контрольные вопросы
- •5 Трансформаторы
- •5.1 Основные понятия о трансформаторах
- •5.2 Приведенный трансформатор и его схема замещения
- •5.3 Режимы работы трансформатора
- •Пример 3.1. Расчёт параметров трёхфазного трансформатора
- •Решение. Так как первичная обмотка соединена звездой, то фазное напряжение первичной обмотки
- •Линейный номинальный ток первичной обмотки
- •Активное сопротивление короткого замыкания
- •Контрольные вопросы
- •6 Асинхронные двигатели
- •6.1 Принцип действия асинхронного двигателя
- •6.2 Асинхронная машина при неподвижном роторе
- •6.3 Работа асинхронной машины при вращающемся роторе
- •6.4 Вращающий момент асинхронного двигателя
- •Пример 6.1. Расчёт параметров асинхронного трёхфазного двигателя с короткозамкнутым ротором
- •Контрольные вопросы
- •7 Выпрямители переменного тока
- •7.1 Основные понятия о выпрямителях
- •7.2 Однофазная схема выпрямления с нулевой точкой
- •Выпрямления с нулевой точкой
- •7.3 Однофазная мостовая схема выпрямления
- •7.4 Трехфазная схема выпрямления с нулевой точкой
- •Среднее значение тока диода
- •Из разложения в ряд Фурье напряжения на нагрузке следует, что амплитуда основной (третьей) гармоники
- •7.5 Трехфазная мостовая схема выпрямления
- •Среднее значение выпрямленного напряжения
- •Среднее значение тока диода
- •Действующее значение тока вторичной обмотки вентильного трансформатора, соединённой звездой,
- •Из выражения для напряжения на нагрузке следует, что амплитуда основной (шестой) гармоники
- •Коэффициент пульсации выпрямленного напряжения
- •Типовая мощность трансформатора
- •7.6 Фильтрация выпрямленного напряжения
- •Индуктивность дросселя в г-образной схеме фильтра можно определить из приближённого выражения
- •Контрольные вопросы
- •8 Задания на выполнение контрольных работ
- •8.1 Контрольная работа № 1 Задача № 1. Расчет линейной электрической цепи постоянного тока с одним источником электрической энергии
- •Задача № 2. Расчет сложной цепи постоянного тока с двумя узлами
- •Задача № 3. Расчет разветвленной линейной цепи постоянного тока с несколькими источниками электрической энергии
- •8.2 Контрольная работа № 2 Задача № 1. Расчёт неразветвлённой цепи однофазного синусоидального тока
- •Задача № 2. Расчёт разветвлённой цепи однофазного синусоидального тока
- •Задача № 3. Расчёт трёхфазной цепи
- •8.3 Контрольная работа № 3 Задача № 1. Расчёт параметров трансформатора
- •Задача № 2. Расчёт параметров трёхфазного асинхронного двигателя
- •Перечень пунктов задания, необходимых для формирования условия задачи:
- •8.4 Контрольная работа № 4
- •9 Основное содержание дисциплины «Электротехника и основы электроники»
- •9.1 Общие сведения о курсе и методические указания
- •По самостоятельной работе над ним
- •9.2 Контрольные вопросы для подготовки к сдаче теоретического курса
- •9.2.1 Вопросы к зачёту по дисциплине «Электротехника и основы электроники»
- •9.2.2 Вопросы для подготовки к экзамену по дисциплине «Электротехника и основы электроники»
- •Приложение a
- •Справочные таблицы
- •Список литературы
Токи в ветвях после разветвления:
А,
А.
Если разветвленный участок имеет только две ветви, включенные параллельно, то токи в ветвях после разветвления можно определять без расчета U ab,используя формулу разброса. Эта формула использовалась в примере 1.1 длярасчёта цепи постоянного тока. В соответствии с этой формулой
Модули показательной формы выражений для токов есть действующие значения реальных токов ветвей, которые фиксируют приборами электромагнитной системы. Следовательно, амперметр в первой ветви покажет 8,3 А, а во второй ветви – 5,86 А.
Вольтметр, включенный параллельно катушке, покажет падение напряжения на ней. Так как падение напряжения на участке есть произведение тока участка на значение его сопротивления, то получаем:
,
где zV– полное сопротивление участка, на котором определяется падение напряжения.
Так как в примере находится падение напряжения на катушке индуктивности с сопротивлением xL1, то на основании выражения (2.25) полное сопротивление участка
Ом.
Падение напряжения на катушке
В.
Показание вольтметра есть модуль выражения UV, т. е.UV= 83 В.
Ваттметр, включенный на входе цепи, показывает активную мощность, потребляемую всей схемой. Эта мощность будет действительной частью выражения комплекса полной мощности Sна входе, которое имеет вид
Активная мощность Р = 551 Вт , реактивная мощностьQ = 620 вар.
Для проверки результатов расчета необходимо составить баланс активных и реактивных мощностей. Эти балансы показывают, что активные и реактивные мощности на входе должны быть равны сумме соответственно активных и реактивных мощностей всех потребителей.
Активная мощность на входе определена, а активные мощности отдельных потребителей рассчитывают как произведение активного сопротивления участка на квадрат действующего значения тока этого участка. В рассматриваемой схеме только два активных потребителя r1иr2. Суммарная мощность этих потребителей
Вт.
Разница в мощностях получилась в 1 Вт, что составляет несколько десятых долей процента. Ошибка менее одного процента допускается. Она возникает из-за округления числовых данных при расчете.
Реактивную мощность потребителей определяют как произведение квадрата тока реактивного элемента на его сопротивление. Причем мощность катушки индуктивности положительна, а конденсатора отрицательна.
Суммарная реактивная мощность всех потребителей
.
Разница в реактивных мощностях также составляет одну единицу, ошибка меньше одного процента. Таким образом, баланс активных и реактивных мощностей соблюдается. Токи определены правильно.
Для возникновения в цепи резонанса напряжений необходимо, чтобы полное сопротивление всей цепи было активным. Полное сопротивление
z = z1 +z23 = 3 +j4 + 5 +j5 = 8 +j9 Ом.
Из выражения для полного сопротивления видно, что эквивалентное реактивное сопротивление исходной цепи равно +9 Ом. Знак плюс указывает на индуктивный характер эквивалентной реактивности. Устранить эту реактивность можно включением в первую ветвь конденсатора с емкостным сопротивлением – 9 Ом (минус подчёркивает емкостный характер реактивности). После такого включения реактивные сопротивления взаимно компенсируются, а полное сопротивление становится активным и равно 8 Ом. В цепи наступает резонанс напряжений.
На
рисунке 2.5 приведена векторная диаграмма,
на которой относительно осей координат
комплексной плоскости +j
и +1 в масштабе построены векторы
напряжений и токов. Вектор строится
под углом к вещественной оси комплексной
плоскости +1. Значение этого угла равно
аргументу показательной формы
комплексного выражения. При положительном
значении аргумента угол откладывается
от вещественной оси против часовой
стрелки, а при отрицательном – по
часовой.
Рисунок 2.5 – Векторная диаграмма разветвлённой цепи переменного тока |
