Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИОХИМИЯ методичка.doc
Скачиваний:
422
Добавлен:
03.06.2015
Размер:
933.89 Кб
Скачать

Кожина Ольга Владимировна

Самарцев Виктор Николаевич

БИОХИМИЯ

малый практикум

учебно-методическое пособие

ВВЕДЕНИЕ

Биохимия – наука о химическом строении и функциях веществ, входящих в состав живой материи, и их превращениях в процессах жизнедеятельности. Биохимия изучает различные структуры, свойственные живым организмам, и химические реакции, протекающие на клеточном и организменном уровнях. Биохимия изучает процессы, лежащие в основе обмена веществ.

В биохимии выделяют два раздела:

1. СТАТИЧЕСКАЯ биохимия – изучает состав живых организмов.

2. ДИНАМИЧЕСКАЯ биохимия – изучает обмен веществ.

Статическая биохимия выявила характерную черту живых клеток – их сложность и высокий уровень молекулярной организации, переход от более простых компонентов клетки к более сложным. Структурную организацию живой клетки можно представить в виде следующей схемы: неорганические вещества (H2O, N2, CO2, O2, P, S) → мономеры (нуклеотиды, аминокислоты, моносахариды, жирные кислоты, глицерин) → макромолекулы (нуклеиновые кислоты, белки, полисахариды, липиды) → сложные макромолекулы (нуклеопротеины, гликопротеины, липопротеины) → комплексы (рибосомы, ядрышко, мембраны, сократительные системы) → органеллы (ядро, митохондрии, лизосомы) → клетка.

Переход от простых биомолекул к сложным биологическим структурам основывается на физико-химических принципах самоорганизации.

Задачей динамической биохимии является изучение обмена веществ, или метаболизма клетки. Обмен веществ – это совокупность двух диаметрально противоположных, но гармонически сочетающихся процессов – синтеза (анаболизма) и распада (катаболизма) веществ. Обмен веществ в клетке не отделим от обмена энергии, т.к. синтез веществ невозможен без затраты энергии.

Другой чертой обмена веществ является тонкое регулирование скорости протекания отдельных химических реакций. Важную роль в регулировании процессов метаболизма играют биологические катализаторы – ферменты. Регуляция клеточного метаболизма может осуществляться либо путем активации или подавления действия ферментов, либо за счет изменения скорости их биосинтеза в клетке.

Раздел 1. Белки

Тема 1 аминокислотный состав белка. Классификация и свойства аминокислот. Качественные реакции на белки и аминокислоты

Белок – высокомолекулярное азотистое природное соединение, распадающееся в ходе гидролиза на аминокислоты.

Белки содержат углерода - 50-55 %, водорода - 6,5-7,3 %, азота - 15-18 %, кислорода - 21-24 %, серы - до 2,4 % и золы - до 0,5 %.

Для построения всех белков используется один и тот же набор из 20 различных аминокислот, ковалентно связанных друг с другом в определенной, характерной только для данного белка последовательности.

Общей структурной особенностью аминокислот является наличие карбоксильной и аминогруппы, связанных с одним и тем же атомом углерода. Различаются аминокислоты боковыми цепями (R-группами), которые у разных аминокислот неодинаковы по структуре, электрическому заряду и растворимости в воде. Карбоксильные и аминогруппы аминокислот участвуют в образовании пептидных связей.

Помимо 20 стандартных, основных или нормальных аминокислот, входящих в состав белков, существуют другие аминокислоты, присутствующие в живых организмах, но не встречающиеся в белках.

Стандартные аминокислоты имеют трехбуквенные и однобуквенные условные обозначения (таблица 1).

Таблица 1

Сокращенные обозначения аминокислот

Аминокислота

Трехбуквенное сокращенное обозначение

Однобуквенное обозначение

1

Аланин

ала

Ala

A

2

Аргинин

арг

Arg

R

3

Аспарагин

асн

Asn

N

4

Аспарагиновая кислота

асп

Asp

D

5

Валин

вал

Val

V

6

Гистидин

гис

His

H

7

Глицин

гли

Gly

G

8

Глутамин

глн

Gln

Q

9

Глутаминовая кислота

глу

Glu

E

10

Изолейцин

иле

Ile

I

11

Лейцин

лей

Leu

L

12

Лизин

лиз

Lys

K

13

Метионин

мет

Met

M

14

Пролин

про

Pro

P

15

Серин

сер

Ser

S

16

Тирозин

тир

Tyr

Y

17

Треонин

тре

Thr

T

18

Триптофан

три

Trp

W

19

Фенилаланин

фен

Phe

F

20

Цинтеин

цис

Cys

C

Протеиногенные аминокислоты делят на 4 группы по полярности радикалов: 1) неполярные (гидрофобные) (рисунок 1); 2) полярные (гидрофильные) незаряженные (рисунок 2); 3) отрицательно заряженные (рисунок 3); 4) положительно заряженные (рисунок 4).

Рисунок 1. Неполярные (гидрофобные) аминокислоты: а) Аланин (Ala) – Ала; б) Валин (Val) – Вал; в) Пролин (Pro) – Про; г) Лейцин (Leu) – Лей; д) Изолейцин (Ile) – Иле; е) Фенилаланин (Phe) – Фен; ж) Метионин (Met) – Мет; з) Триптофан (Trp) – Три.

Рисунок 2. Незаряженные полярные аминокислоты: а) Глицин (Gly)- Гли; б) Серин (Ser) – Сер; в) Треонин (Thr) – Тре; г) Тирозин (Tyr) – Тир; д) Аспарагин (Asn) – Асн; е) Глутамин (Gln) – Глн; ж) Цистеин (Cys) - Цис

Рисунок 3. Отрицательно заряженные аминокислоты: а) Аспарагиновая кислота (Asp) – Асп; б) Глутаминовая кислота (Glu) – Глу.

Рисунок 4. Положительно заряженные аминокислоты: а) Лизин (Lys) – Лиз; б) Аргинин (Arg) – Арг; г) Гистидин (His) – Гис.

Радикалы аминокислот участвуют в образовании связей: 1) гидрофобные радикалы участвуют в гидрофобных взаимодействиях; 2) гидрофильные радикалы формируют водородные связи; 3) полярные (заряженные) радикалы образуют ионные связи; 4) сближение двух радикалов цистеина цис-SH + цис-SH ведет к образованию дисульфидной связи цис-S–S-цис.