Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kluwer - Handbook of Biomedical Image Analysis Vol

.2.pdf
Скачиваний:
102
Добавлен:
10.08.2013
Размер:
25.84 Mб
Скачать

442

Xu et al.

[10]Haralic, R. M., and Shapiro, L. G., Image segmentation techniques, CVGIP: Graph. Models Image Process., Vol. 29, pp. 100–132, 1985.

[11]Beveridge, J. R. et al., Segmenting image using localizing histograms and region merging, Int. J. Comput. Vision, Vol. 2, 1989.

[12]Leclerc, Y. G., Region growing using the MDL principle, In: DARPA Image Understanding Workshop, 1990.

[13]Trivedi, M. and Bezdek, J. C., Low-level segmentation of aerial images with fuzzy clustering, IEEE Trans. on System Man Cybern, Vol. 16, No. 4, pp. 589–598, 1986.

[14]Cpong, T., Shapiro, L. G., Watson, L. T., and Haralick, R. M., Experiments in segmentation using a facet model region grower, Comput. Vision Graph. Image Process, Vol. 1, pp. 360–372, 1972.

[15]Canny, J., A computational approach to edge detection, IEEE Trans. PAMI, Vol. PAMI-8, No. 6, pp. 679–698, 1986.

[16]Zhou, Y. T., Venkateswar, V., and Chellappa, R., Edge detection and linear feature extraction using a 2-D random field model, IEEE Trans. PAMI, Vol. 11, pp. 84–95, 1989.

[17]Haralick, R. M., Digital step edges from zero crossing of second directional derivatives, IEEE Trans. PAMI, Vol. 6, pp. 58–68, 1984.

[18]Reichenbach, S. E., Park, S. K., and Gartenberg, R. A., Optimal, small kernels for edge detection, In: Proceedings of 10th ICPR, 1990, pp. 57– 63.

[19]Meier, T., Ngan, K. N., and Crebbin, G., A robust Markovian segmentation based on highest confidence first, In: IEEE International Conference on Image Processing, Santa Barbara, Oct. 1997.

[20]Pappas, T. N., An adaptive clustering algorithm for image segmentation, IEEE Trans. Signal Process., Vol. 40, No. 4, pp. 901–914, 1992.

[21]Chou, P. B. and Brown, C. M., The theory and practice of Bayesian image labeling, Int. J. Comput. Vision, Vol. 4, pp. 185–210, 1990.

Segmentation Issues in Carotid Artery Atherosclerotic Plaque

443

[22]Geman, S. and Geman, D., Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. PAMI, Vol. PAMI-6, No. 6, pp. 721–741, 1984.

[23]Cohen, L. D. and Kimmel, R., Global minimum for active contour model: A minimal path approach, Int. J. Comput. Vision, Vol. 24, pp. 57–78, 1997.

[24]Wang, H. and Ghosh, B. K., Geometric deformable model and segmentation, In: IEEE International Conference on Image Processing, Chicago, USA, 1998.

[25]Vieren, C., Cabestaing, F., and Postaire, J. G., Catching motion objects with snakes for moving tracking, Patt. Recogn. Lett., Vol. 16, pp. 679– 685, 1995.

[26]Bertalmio, M., Sapiro, G., and Randall, G., Morphing active contours: A geometric approach to topology-independent image segmentation and tracking, In: IEEE International Conference on Image Processing, Chicago, USA, 1998.

[27]Cohen, L. D., On active contour models and ballons, CVGIP: Image Understand., Vol. 53, No. 2, pp. 211–218, 1991.

[28]Bello, M. G., A combined Markov random field and wave-packet transform-based approach for image segmentation, IEEE Trans. Image Process., Vol. 3, No. 6, pp. 834–846, 1994.

[29]Zhu, S. C. and Yuille, A., Region competition: Unifying snake/balloon, region growing and Bayes/MDL/energy for multi-band image segmentation, In: Proceedings of Fifth International Conference on Computer Vision, 1995, pp. 416–423.

[30]Lumia, R., Shapiro, G., and Zuniga, O., A new connected component algorithm for virtual memory computers, Comput. Vision, Graphics Image Process., Vol. 22, pp. 287–300, 1983.

[31]Malladi, R., Sethian, J. A., and Vemuri, B. C., A topology independent shape modeling scheme, SPIE Geomet. Meth. Comput. Vision II, Vol. 2031, pp. 246–258, 1993.

444

Xu et al.

[32]Lin, E., A Fuzzy Global Minimum Snake Model for Contour Detection, Ph.D. Dissertation, University of Washington, 1999.

[33]Besag, J., Spatial interaction and the statistical analysis of lattice systems, J. R. Stat. Soc. B, Vol. 36, No. 2, pp. 192–236, 1974.

[34]Yemez, Y., Sankur, B., and Anarim, E., Region growing motion segmenation and estimation in object-oriented video coding, ICIP, Vol. 2, pp. 521–524, 1996.

[35]Zhang, J. and Gao, J., Image sequence segmentation using curve evolution, In: 33th Annual Asilomar Conference on Signals, Systems and Computers, Oct. 1999.

[36]Wilson, R., Meulemans, P., Calway, A., and Kruger,¨ S., Image sequence analysis and segmentation using G-blobs, ICIP, 1998.

[37]Alatin, A. A., Onural, L., Wollborn, M., Mech, R., Tuncel, E., and Sikora, T., Image sequence analysis for emerging interactive multimedia services—The European cost 211 framework, IEEE Trans. CSVT, Vol. 8, No. 7, pp. 802–813, 1998.

[38]Allen, J. T. and Huntsberger, T., Comparing color edge detection and segmentation methods, In: Proceedings of IEEE Southeaster Conference, 1989, pp. 722–728.

[39]Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[40]Priese, L. and Rehrmann, V., On hierarchical color segmentation and applications, In: Proceedings of CVPR, New York, USA, 15–17 June 1993, pp. 633–634.

[41]Taylor, R. I. and Lewis, P. H., Color image segmentation using boundary relaxation, In: Proceedings of 11th IAPR International Conference on Pattern Recognition, Den Hague, Netherlands, Aug 30–Sept 2, 1992, Vol. III, pp. 721–724.

[42]Schettini, R., A segmentation algorithm for color images, Patt. Recogn. Lett., Vol. 14, pp. 499–506, 1993.

Segmentation Issues in Carotid Artery Atherosclerotic Plaque

445

[43]Bonsiepen, L. and Coy, W., Stable segmentation using color information, In: Proceedings of CAIP’91, Dresden, Sept 17–19, 1991, pp. 77–84.

[44]Ferri, F. and Vidal, E., Color image segmentation and labeling through multiedit-condensing, Patt. Recogn. Lett., Vol. 13, No. 8, pp. 561–568, 1992.

[45]Umbaugh, S. E., Moss, R. H., Stoecker, W. V., and Hance, G. A., Automatic color segmentation algorithms with applications to skin tumor feature identification, IEEE Eng. Med. Biol., Vol. 12, No. 3, pp. 75–82, 1993.

[46]Chang, M. M., Patti, A. J., Sezan, M. I., and Tekalp, A. M., Adaptive Bayesian approach for color image segmentation, In: SPIE Conference on Visual Communication and Image Processing, Boston, MA, Nov 1993.

[47]Wright, W. A., Markov random field approach to data fusion and color segmentation, Image vision comput., Vol. 7, pp. 144–150, 1989.

[48]Comaniciu, D. and Meer, P., Robust analysis of feature space: color image segmentation, In: IEEE Conference Computer Vision and Pattern Recognition, Puerto Rico, 1997, pp. 750–755.

[49]Taxt, T., Flynn, P. J., and Jain, A. K., Segmentation of document images, IEEE Trans. PAMI., Vol. 11, No. 12, pp. 1322–1329, 1989.

[50]Nakagawa, Y. and Rosenfeld, A., Some experiments on variable thresholding, Patt. Recogn., Vol. 11, pp. 191–204, 1979.

[51]Weszka, J. S. and Rosenfeld, A., Threshold evaluation techniques, IEEE Trans. Syst. Man Cybern., Vol. 8, pp. 622–629, 1978.

[52]Pal, S. K. and Pal, N. R., Segmentation based on measures of contrast, homogeneity, and region size, IEEE Trans. Syst. Man Cybern., Vol. 17,

pp.857–868, 1987.

[53]Meyer, F. and Beucher, S., Morphological segmentation, J. Vis. Commun. Image Represent., Vol. 1, No. 1, pp. 21–46, 1990.

[54]Salembier, P. and Pardas, M., Hierarchical morphological segmentation for image sequence coding, IEEE Trans. Image Process., Vol. 3, No. 5,

pp.639–651, 1994.

446

Xu et al.

[55]Li, S. Z., Markov Random Field Modeling in Computer Vision, SpringerVerlag, Berlin, 1995.

[56]Cerny, V., A thermo dynamical approach to the traveling salesman problem: An efficient simulation algorithm, J. Optimization Theory Appl., Vol. 45, pp. 41–51, 1985.

[57]Kirkpatric, S., Gellate, C. D., and Vecchi, M., Optimization by simulated annealing, Science, Vol. 220, pp. 671–680, 1983.

[58]Murray, D. W., Kashko, A., and Buxton, B. F., An approach to the picture restoration algorithm of Gemen and Geman on an SIMD machine, Image Vision Comput., Vol. 4, pp. 133–142, 1986.

[59]Metropolis, N., Equations of state calculations by fast computational machine, J. Chem. Phys., Vol. 21, pp. 1087–1092, 1953.

[60]Mokhtari, M. and Bergevin, R., Multi-scale segmentation and approximation for significant description of 2D contours, In: IEEE Conference on Image Processing, 1997.

[61]Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour models, Int. J. Comput. Vision, pp. 321–331, 1988.

[62]Chiou, G. I. and Hwang, J. N., A knowledge driven stochastic active contour model (KBS-SNAKE) for contour finding of distinct features, IEEE Trans. Image Process., Vol. 4, No. 10, pp. 1407–1416, 1995.

[63]Caselles, V., Catte, F., Coll, T., and Dibos, F., A geometric model for active contours, Numerische Mathematik, Vol. 66, pp. 1–31, 1993.

[64]Miller, J. V., Breen, D. E., Lorensen, W. E., O’Bara, R. M., and Wozny, M. J., Geometrically deformed models: A method to extract closed geometric models from volume data, Comput. Graph., Vol. 25, No. 4, pp. 217–226, 1991.

[65]Osher, S. and Sethian, J. A., Fronts propagating with curvature dependent speed: Algorithms based on Hamiltion–Jacobi formulation, J. Comput. Phy., Vol. 79, pp. 12–49, 1988.

Segmentation Issues in Carotid Artery Atherosclerotic Plaque

447

[66]Sethian, J. A., Numerical algorithm for propagating interface: Hamilton– Jacobi equation and conservation laws, J. Diff. Geometry, Vol. 31, pp. 131–161, 1990.

[67]Caselles, V., Kimmel, R., and Shapiro, G., Geodesic active contours, In: Proceedings of the Fifth International Conference on Computer Vision, Boston, MA, 1995, pp. 694–699.

[68]Amini, A. A., Tehrani, S., and Weymouth, T. E., Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints, In: Second International Conference on Computer Vision, 1990, pp. 95–99.

[69]Geiger, D., Gupta, A., Costa, L. A., and Vlontzos, J., Dynamic programming for detecting, tracking, and matching deformable contours, IEEE Trans. Patt. Anal. Machine Intell., Vol. 17, No. 3, pp. 294–302, 1995.

[70]Chandran, S. and Potty, A. K., Energy minimization of contours using boundary conditions, IEEE Trans. Patt. Anal. Machine Intell., Vol. 20, No. 5, pp. 546–549, 1998.

[71]Kass, M. et al., Snakes: Active contour models, Int. J. Comput. Vision, pp. 321–331, 1987.

[72]Berger, M. O. and Mohr, R., Towards, autonomy in active contour models, In: Proceedings of 10th International Conference on Pattern Recognition, Atlantic City, NJ, USA, June 1990, Vol. 1, pp. 847–851.

[73]Yuan, C., Lin, E., and Hwang, J. N., Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images, Magn. Reson. Imaging, Vol. 17, No. 2, pp. 257–266, 1999.

[74]Cohen, L. D., On active contour models and balloons, CVGIP: Image Understand., Vol. 53, No. 2, pp. 211–218, 1991.

[75]Cohen, L. D. and Cohen, I., Finite-element methods, for active contour models and balloons for 2-D and 3-D images, IEEE Trans. Patt. Anal. Machine Intell., Vol. 15, No. 11, pp. 1131–1147, 1993.

448

Xu et al.

[76]Lin, E., Hwang, J.-N., and Yuan, C., Measurements of blood vessel wall areas in black-blood MR images using global minimum snake algorithm, In: IEEE International Conference on Acoustic, Speech and Signal Processing, Phoenix, AZ, March 1999, Vol. 6, pp. 3409–3412.

[77]Yokoyama, T., Yagi, Y., and Yachida, M., Active contour model for extracting human faces, In: Fourteenth International Conference on Pattern Recognition, Brisbane, Qld., Australia, Aug 1998, Vol. 1, pp. 673– 676.

[78]Wyszecki, G. and Stiles, W. S., Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn., Wiley, New York, pp. 113, 1982.

[79]Hunt, R. W. G., Measuring Color, Ellis Horwood, Chichester, England, 1987.

[80]Skarbek, W. and Koschan, A., Color image segmentation—A survey, Technical Report 94-32, Technical University, Berlin, October 1994.

[81]Clarke, S. et al., Multispectral analysis of MR images of atherosclerotic plaque: Correlation with histology, In: 8th Annual Meeting of ISMRM, Denver, USA, April 2000.

[82]Panjwani, D. K., and Healey, G., Markov random field models for unsupervised segmentation of textured color images, IEEE Trans. PAMI, Vol. 17, No. 10, pp. 939–954, 1995.

[83]Comaniciu, D. and Meer, P., Mean shift analysis and applications, In: IEEE International Conference Computer Vision (ICCV’99), Kerkyra, Greece, 1999, pp. 1197–1203.

[84]Pal, N. R. and Pal. S. K., A review on image segmentation techniques, Patt. Recogn., Vol. 26, No. 9, pp. 1277–1294, 1995.

[85]Rousseeuw, P. J. and Leroy, A., Robust Regression and Outlier Detection, Wiley, New York, Section 7.1, 1987.

[86]Jain, A. K., Murty, M., Narasimha, and Flynn, P. J., Data clustering: A review, ACM Comput. Surv., Vol. 31, No. 3, pp. 264–323, 1999.

Segmentation Issues in Carotid Artery Atherosclerotic Plaque

449

[87]Rousseeuw, P. J., Least median of squares regression, J. Am. Stat. Assoc., Vol. 79, pp. 871–880, 1984.

[88]Jolion, J. M., Meer, P., and Bataouche, S., Robust clustering with applications in computer vision, IEEE Trans. Patt. Anal. Machine Intell., Vol. 13, pp. 791–802, 1991.

[89]Fukunaga, K. and Hostetler, L. D., The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Trans. Info. Theory, Vol. IT-21, pp. 32–40, 1975.

[90]Cheng, Y., Mean shift, mode seeking, and clustering, IEEE Trans. Patt. Anal. Machine Intell., Vol. 17, pp. 790–799, 1995.

[91]Silverman, B. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York, 1986.

[92]Xu, D. and Hwang, J.-N., A topology independent active contour tracking, In: IEEE NNSP’99, Madison, USA, Aug 23–25, 1999, pp. 164–167.

[93]Wasserman, B. A., Clinical carotid atherosclerosis, Neuroimaging Clin. N. Am., pp. 403, 2002.

[94]Willeit, J. and Kiechl, S., Biology of arterial atheroma, Cerebrovas. Dis., Vol. 10, pp. 1–8, 2000.

[95]Dhume, A. S., Soundararajan, K., Hunter, W. J., and Agrawal, D. K., Comparison of vascular smooth muscle cell apoptosis and fibrous cap morphology in symptomatic and asymptomatic carotid artery disease, Ann. Vas. Surg., Vol. 17, pp. 1–8, 2003.

[96]Winn, W. B., Schmiedl, U. P., Reichenbach, D. D., Beach, K. W., Nghiem, H., Dimas, C., Daniel, E., Maravilla, K. R., and Yuan, C., Detection and characterization of atherosclerotic fibrous caps with T2-weighted MR, Am. J. Neuroradiol., Vol. 19, pp. 129–134, 1998.

[97]Hatsukami, T. S., Ross, R., Polissar, N. L., and Yuan, C., Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in-vivo with high resolution magnetic resonance imaging, Circulation, Vol. 102, pp. 959–964, 2000.

450

Xu et al.

[98]Mitsumori, L. M., Hatsukami, T. S., Ferguson, M. S., Kerwin, W. S., Cai,

J.C., and Yuan, C., In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques,

J.Magn. Reson. Imaging, Vol. 17, pp. 410–420, 2003.

[99]Wasserman, B. A., Smith, W. I., Trout, H. H., Cannon, R. O., Balaban,

R.S., and Arai, A. E., Carotid artery atherosclerosis: In vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging—initial results, Radiology, Vol. 223, pp. 566–573, 2002.

[100]Han, C., Hwang, J. N., and Yuan, C., A fast minimal path active contour model, IEEE Trans. Image Process., Vol. 6, pp. 865–873, 2001.

[101]Eubank, W. B., Yuan, C., et al., Endarterectomy specimen shrinkage: Comparison of T2-weighted MR imaging of specimen ex vivo to histological process, J. Vascular Invest., Vol. 4, pp. 147–152, 1998.

Chapter 9

Accurate Lumen Identification, Detection,

and Quantification in MR Plaque Volumes

Jasjit Suri,1 Vasanth Pappu,1 Olivier Salvado,1 Baowei Fei,1

Swamy Laxminarayan,2 Shaoxiong Zhang,3 Jonathan Lewin,3

Jeffrey Duerk,3 and David Wilson1

9.1 Introduction

The importance of plaque component classification and vessel wall quantification has been well established by several research groups (see Refs. [1–30]). Following are the two main reasons for this research:

1.Regression and progression of atherosclerosis: Direct plaque imaging is of potential use not only for diagnosis but also for monitoring response to treatment. Angiographic studies of progression and regression of atherosclerosis have been notoriusly poor in demonstrating changes in plaque burden, even when changes in clinical event rates have been markedly altered (see Brown et al. [6]). In a study of diet-/injury- induced atherosclerosis in rabbits, T2-weighted MRI identified regression of atherosclerosis 12–20 months after the withdrawal of the atherogenic diet (regression group). In contrast, lesion progression was documented in rabbits that were continued on the atherogenic diet (progression group). Helft et al. [25] showed that there was a significant reduction in the lipid

1 Biomedical Engineering Department, Case Western Reserve University, Cleveland OH,

USA

2 Biomedical Engineering Department, Idaho State University, Pocatello, ID, USA 3 Department of Radiology, Case Western Reserve University, Cleveland OH, USA

451