
- •Э.М. Нуруллаев., н.А. Вдовин
- •Оглавление
- •Введение
- •Кинематика поступательного и вращательного движения абсолютно твердого тела
- •1.1. Поступательное движение
- •1.2. Вращательное движение
- •2. Динамика поступательного движения
- •2.1. Фундаментальные взаимодействия
- •2.2. Основные характеристики динамики Ньютона
- •2.3. Закон инерции. Инерциальные системы отсчета
- •2.4. Масса и закон сохранения импульса
- •2.5. Второй закон Ньютона
- •2.6. Третий закон Ньютона и закон сохранения импульса
- •2.7. Преобразования и принцип относительности Галилея
- •2.8. Основной закон динамики поступательного движения и закон сохранения импульса для системы материальных точек
- •2.9. Некоторые силы, рассматриваемые в механике
- •2.10. Практическое применение законов Ньютона
- •2.11. Движение тела с переменной массой
- •Вопросы для самоконтроля
- •3. Динамика вращательного движения твердого тела
- •3.1. Основной закон динамики вращательного движения
- •Сумма произведений массы каждой материальной точки тела на квадрат ее расстояния до оси называется моментом инерции тела относительно этой оси. Момент инерции относительно оси Оz равен
- •3.2. Закон сохранения момента импульса
- •Вопросы для самоконтроля
- •4. Работа, мощность, энергия
- •4.1. Работа и мощность при поступательном движении
- •4.2. Работа и мощность при вращательном движении
- •4.3. Кинетическая энергия при поступательном движении
- •4.4. Кинетическая энергия вращающегося тела
- •4.5. Потенциальная энергия
- •4.6. Силы и потенциальная энергия
- •4.7. Закон сохранения энергии
- •4.8. Применение законов сохранения к соударениям тел
- •5. Колебательное движение
- •5.1. Механические колебания
- •5.2. Гармонические колебания
- •5.2.1. Кинематические характеристики гармонического колебания
- •5.2.2. Динамические характеристики гармонического колебания
- •Потенциальная энергия
- •5.3. Маятник
- •5.3.1. Математический маятник
- •5.3.2. Физический маятник
- •5.4. Сложение гармонических колебаний
- •5.4.1. Сложение колебаний одной частоты, направленных вдоль одной прямой
- •5.4.2. Биения
- •5.4.3. Сложение взаимно перпендикулярных колебаний
- •5.5. Затухающие колебания
- •Согласно формуле (5.5) период затухающих колебаний
- •5.6. Вынужденные колебания
- •6. Упругие волны
- •6.1. Волновые процессы. Продольные и поперечные волны
- •6.2. Энергия упругих волн. Вектор Умова
- •6.3. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Для характеристики волн используется волновое число
- •Учитывая (6.8), уравнению (6.7) можно придать вид
- •6.4. Принцип суперпозиции. Групповая скорость
- •6.5.Интерференция волн
- •6.6. Стоячие волны
- •7. Молекулярная физика
- •7.1. Предмет молекулярной физики и термодинамики. Статистический и термодинамический методы изучения макроскопических систем
- •7.2. Основные положения молекулярно-кинетической теории
- •7.3. Газообразное состояние вещества. Идеальный газ
- •7.4. Параметры состояния идеального газа
- •7.5. Основное уравнение молекулярно-кинетической теории (уравнение Клаузиуса) и следствия из него
- •Уравнение (4) с учетом (5) примет вид
- •Произведение na равно числу молекул n, содержащихся в массе газа m. С учетом этого получим
- •А с учетом того, что число молекул в единице объема, можно записать:
- •7.6. Закон Максвелла распределения молекул идеального газа по скоростям и энергиям
- •7.8. Идеальный газ в однородном поле тяготения.
- •7.9. Число столкновений и средняя длина свободного пробега молекул
- •7.10. Явления переноса в газах
- •7.11.Реальные газы
- •7.13. Внутренняя энергия реального газа. Эффект Джоуля – Томсона
- •7.14. Элементы механики жидкостей. Давление в жидкости и газе
- •7.15. Уравнение Бернулли
- •7.16.Движение тел в жидкостях и газах
- •8. Термодинамика
- •8.1. Внутренняя энергия, работа и теплота
- •В случае идеального газа нет сил межмолекулярного взаимодействия и внутренняя энергия равна сумме энергий беспорядочного (теплового) движения всех молекул.
- •8.2. Внутренняя энергия идеального газа. Степени свободы системы
- •Внутренняя энергия произвольной массы идеального газа
- •8.3. Работа и теплота
- •8.4. Первое начало термодинамики
- •8.5. Применение первого начала термодинамики к изопроцессам в идеальном газе
- •8.6. Политропические процессы
- •8.7. Тепловые двигатели и холодильные машины. Цикл Карно и его кпд
- •8.8. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •8.9. Второе начало термодинамики
- •8.10. Применение второго начала термодинамики для определения изменения энтропии в процессах идеального газа
- •8.11. Третье начало термодинамики, или теорема Нернста – Планка
- •Список литературы
8. Термодинамика
Термодинамика – это наука, которая изучает вопросы, связанные с образованием работы и тепловой энергии.
Однако законы, лежащие в основе термодинамики, имеют настолько общий характер, что в настоящее время термодинамические методы с большим успехом применяются для исследования многочисленных физических и химических процессов и для изучения свойств вещества и излучения.
При изучении свойств и процессов превращения вещества термодинамика не вдается в рассмотрение микроскопической картины явлений. В основе термодинамики лежат общие принципы, или, как их называют, начала, являющиеся обобщением опытных данных.
Объектом исследование термодинамики является термодинамическая система. Термодинамической системой называется совокупность тел, обменивающихся энергией как между собой, так и с внешними телами. Примером термодинамической системы может служить газ, заключенный в цилиндр под поршнем. Если внешние условия неизменны, то термодинамическая система, оказавшаяся в этих условиях, приходит через некоторое время в состояние, при котором в ней прекращаются всякие макроскопические изменения. Такое состояние называется термодинамическим равновесием. При термодинамическом равновесии состояние системы в целом описывается тремя параметрами: давлением, объемом и температурой, связанными между собой уравнением состояния системы.
8.1. Внутренняя энергия, работа и теплота
Энергия – это количественная мера движения материи. Каждому виду движения материи соответствует свой вид энергии.
Всякая термодинамическая система в любом состоянии обладает некоторой энергией: кинетической энергией системы как целого, потенциальной энергией во внешнем поле сил и внутренней энергией. В термодинамике обычно рассчитывают макроскопически неподвижные системы, не подверженные действию внешних полей. Для таких систем значения полной и внутренней энергии совпадают. Поэтому понятие внутренней энергии является одним из основных в термодинамике.
Внутренняя энергия системы U равна сумме всех видов энергий движения и взаимодействия частиц, составляющих данную систему. Например, внутренняя энергия газообразной системы включает в себя:
кинетическую энергию поступательного и вращательного движения молекул;
кинетическую энергию колебательного движения атомов в молекуле;
потенциальную энергию взаимодействия молекул и атомов внутри молекулы;
энергию электронных оболочек атомов;
энергию движения и взаимодействия нуклонов в ядрах атомов.
Внутренняя энергия – однозначная функция состояния системы, ее значение не зависит от того, каким образом система пришла в данное состояние, т.е. не зависит от вида процесса перехода.
Подобно потенциальной энергии в механике внутренняя энергия может быть количественно определена только с точностью до постоянного слагаемого U0, зависящего от выбора «начала отсчета» внутренней энергии, т.е. от выбора состояния, в котором внутреннюю энергию системы принимают равной нулю. Однако значение U0 несущественно, так как в термодинамических расчетах приходится определять не абсолютное значение U, а не зависящее от U0 изменение этой энергии U в различных термодинамических процессах. По той же причине под внутренней энергией обычно понимают те ее составляющие, которые изменяются в рассматриваемых процессах. Так, например, в дальнейшем мы будем касаться процессов, не сопровождающихся изменением электронных оболочек атомов и внутриядерной энергии.
Под внутренней энергией газа будем понимать энергию теплового движения (поступательного и вращательного) молекул и потенциальную энергию их взаимодействия.