
- •Э.М. Нуруллаев., н.А. Вдовин
- •Оглавление
- •Введение
- •Кинематика поступательного и вращательного движения абсолютно твердого тела
- •1.1. Поступательное движение
- •1.2. Вращательное движение
- •2. Динамика поступательного движения
- •2.1. Фундаментальные взаимодействия
- •2.2. Основные характеристики динамики Ньютона
- •2.3. Закон инерции. Инерциальные системы отсчета
- •2.4. Масса и закон сохранения импульса
- •2.5. Второй закон Ньютона
- •2.6. Третий закон Ньютона и закон сохранения импульса
- •2.7. Преобразования и принцип относительности Галилея
- •2.8. Основной закон динамики поступательного движения и закон сохранения импульса для системы материальных точек
- •2.9. Некоторые силы, рассматриваемые в механике
- •2.10. Практическое применение законов Ньютона
- •2.11. Движение тела с переменной массой
- •Вопросы для самоконтроля
- •3. Динамика вращательного движения твердого тела
- •3.1. Основной закон динамики вращательного движения
- •Сумма произведений массы каждой материальной точки тела на квадрат ее расстояния до оси называется моментом инерции тела относительно этой оси. Момент инерции относительно оси Оz равен
- •3.2. Закон сохранения момента импульса
- •Вопросы для самоконтроля
- •4. Работа, мощность, энергия
- •4.1. Работа и мощность при поступательном движении
- •4.2. Работа и мощность при вращательном движении
- •4.3. Кинетическая энергия при поступательном движении
- •4.4. Кинетическая энергия вращающегося тела
- •4.5. Потенциальная энергия
- •4.6. Силы и потенциальная энергия
- •4.7. Закон сохранения энергии
- •4.8. Применение законов сохранения к соударениям тел
- •5. Колебательное движение
- •5.1. Механические колебания
- •5.2. Гармонические колебания
- •5.2.1. Кинематические характеристики гармонического колебания
- •5.2.2. Динамические характеристики гармонического колебания
- •Потенциальная энергия
- •5.3. Маятник
- •5.3.1. Математический маятник
- •5.3.2. Физический маятник
- •5.4. Сложение гармонических колебаний
- •5.4.1. Сложение колебаний одной частоты, направленных вдоль одной прямой
- •5.4.2. Биения
- •5.4.3. Сложение взаимно перпендикулярных колебаний
- •5.5. Затухающие колебания
- •Согласно формуле (5.5) период затухающих колебаний
- •5.6. Вынужденные колебания
- •6. Упругие волны
- •6.1. Волновые процессы. Продольные и поперечные волны
- •6.2. Энергия упругих волн. Вектор Умова
- •6.3. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •Для характеристики волн используется волновое число
- •Учитывая (6.8), уравнению (6.7) можно придать вид
- •6.4. Принцип суперпозиции. Групповая скорость
- •6.5.Интерференция волн
- •6.6. Стоячие волны
- •7. Молекулярная физика
- •7.1. Предмет молекулярной физики и термодинамики. Статистический и термодинамический методы изучения макроскопических систем
- •7.2. Основные положения молекулярно-кинетической теории
- •7.3. Газообразное состояние вещества. Идеальный газ
- •7.4. Параметры состояния идеального газа
- •7.5. Основное уравнение молекулярно-кинетической теории (уравнение Клаузиуса) и следствия из него
- •Уравнение (4) с учетом (5) примет вид
- •Произведение na равно числу молекул n, содержащихся в массе газа m. С учетом этого получим
- •А с учетом того, что число молекул в единице объема, можно записать:
- •7.6. Закон Максвелла распределения молекул идеального газа по скоростям и энергиям
- •7.8. Идеальный газ в однородном поле тяготения.
- •7.9. Число столкновений и средняя длина свободного пробега молекул
- •7.10. Явления переноса в газах
- •7.11.Реальные газы
- •7.13. Внутренняя энергия реального газа. Эффект Джоуля – Томсона
- •7.14. Элементы механики жидкостей. Давление в жидкости и газе
- •7.15. Уравнение Бернулли
- •7.16.Движение тел в жидкостях и газах
- •8. Термодинамика
- •8.1. Внутренняя энергия, работа и теплота
- •В случае идеального газа нет сил межмолекулярного взаимодействия и внутренняя энергия равна сумме энергий беспорядочного (теплового) движения всех молекул.
- •8.2. Внутренняя энергия идеального газа. Степени свободы системы
- •Внутренняя энергия произвольной массы идеального газа
- •8.3. Работа и теплота
- •8.4. Первое начало термодинамики
- •8.5. Применение первого начала термодинамики к изопроцессам в идеальном газе
- •8.6. Политропические процессы
- •8.7. Тепловые двигатели и холодильные машины. Цикл Карно и его кпд
- •8.8. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
- •8.9. Второе начало термодинамики
- •8.10. Применение второго начала термодинамики для определения изменения энтропии в процессах идеального газа
- •8.11. Третье начало термодинамики, или теорема Нернста – Планка
- •Список литературы
7.5. Основное уравнение молекулярно-кинетической теории (уравнение Клаузиуса) и следствия из него
Для
вывода основного уравнениямолекулярно-кинетической
теории(МКТ)
рассмотрим идеальный одноатомный газ.
Предположим, что молекулы газа движутся
хаотически и число взаимных столкновений
между молекулами газа намного меньше,
чем число ударов о стенки сосуда.
Допустим, что столкновения молекул со
стенками сосуда носят характер абсолютно
упругого удара. Выделим на стенке сосуда
некоторую элементарную площадку S
(рис. 7.2) и вычислим давление, оказываемое
на эту площадку.
При каждом соударении молекула, движущаяся перпендикулярно площадке, передает ей импульс mivi –(–mivi) = 2mivi , где mi – масса i-й молекулы, vi – ее скорость. За время t площадки S достигнут только те молекулы, которые заключены в объеме параллелепипеда с основанием S и высотой vt (см. рис.7.2). Число этих молекул N = nV = nSvt (n = N/V – концентрация молекул, равная отношению числа молекул к объему занимаемого ими пространства).
Необходимо учитывать, что реально молекулы движутся к площадке S под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул (1/6) движется вдоль данного направления в одну сторону, половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку S будет равно 1/6 nSvt. При столкновении с площадкой эти молекулы одинаковой массы передадут ей импульс P = 2mv1/6nSvt = 1/3nmSv2t .
Тогда
давление газа, оказываемое им на стенку
сосуда,
;
согласно второму закону Ньютона
,
поэтому
.
(7.4)
Если газ в объеме V содержит N молекул, движущихся со скоростями v1, v2, ..., vN, то целесообразно рассматривать среднюю квадратичную скорость
,
(7.5)
характеризующую всю совокупность молекул газа.
Уравнение (4) с учетом (5) примет вид
.
(7.6)
Выражение (7.6) называется основным уравнением молекулярно- кинетической теории идеальных газов или уравнением Клаузиуса. Точный расчет с учетом движения молекул по всевозможным направлениям дает ту же формулу.
Учитывая,
что
,
получим
(7.7)
или
,
(7.8)
где Е – суммарная кинетическая энергия поступательного движения всех молекул газа. Уравнение (7.8) является еще одной формой записи основного уравнения молекулярно-кинетической теории идеального газа.
Рассмотрим следствия, вытекающие из основного уравнения молекулярно-кинетической теории идеального газа:
1. Уравнение (7.8) позволяет получить все известные законы идеального газа: Гей-Люссака, Бойля – Мариотта, Шарля, Менделеева – Клапейрона и др. Действительно, если в сосуде объемом V при давлении р и температуре Т находится N молекул, то n = N/V, а Е = сТ в силу (7.3), где с – коэффициент пропорциональности. Тогда
,
Коэффициент 2/3Nc = В зависит от массы газа и его природы. Если масса газа постоянна, то можно записать закон Клапейрона – Менделеева
.
(7.9)
В соответствии с законом Авогадро моли всех газов при нормальных условиях занимают одинаковый объем, равный 22,4 м3/моль. Отсюда следует, что в случае, когда количество газа равно одному молю, величина В в (7.9) будет одинаковой для всех газов и ее можно обозначить буквой R и назвать универсальной газовой постоянной (R = 8,31 Дж/(Кмоль)). Тогда уравнение (7.9) для одного моля запишется в виде
рV = RT . (7.10)
От
уравнения для одного моля можно перейти
к уравнению для любой массы газа, приняв
во внимание, что при одинаковых давлении
и температуре
молей будут занимать в
раз больше объем, чем один моль, в
результате получим:
,
(7.11)
где М – масса газа, – масса моля газа (молярная масса). С учетом (7.11), выражение (7.10) перепишем в виде:
.
(7.12)
Уравнение (7.12) называется уравнением состояния идеального газа или уравнением Менделеева – Клапейрона для произвольной массы газа.
2.
Так как, согласно второму
закону Авогадро, моли всех газов содержат
одинаковое число молекул, равное NA
= 6,021026
моль1,
уравнение (7.12) можно преобразовать к
новому виду. Для этого введем величину
.
Подставив в выражении k численные значения R и NA, получим
k
== 1,381023
Дж/К (постоянная Больцмана).
Умножив и разделив правую часть уравнения (7.12) на NA, получим
pV = NAkT .