
- •Предмет и место дисциплины «Механика жидкости и газа» в ряду общеинженерных дисциплин.
- •Этапы развития науки «Механика жидкости и газа». Вклад российских ученых в развитие данной науки.
- •Жидкость – второе агрегатное состояние вещества. Отличие физических свойств жидкости от свойств газов и твердых тел.
- •Реальные и идеальные жидкости. Основные свойства реальных жидкостей.
- •Понятие плотности жидкости и газов. Относительная плотность, удельный вес и удельный объем. Связь между этими величинами.
- •Изменение плотности подвижных сред при изменении давления и температуры.
- •Термическое расширение и сжимаемость жидкостей и газов. Коэффициенты сжатия и расширения.
- •8. Поверхностное натяжение жидкости. Коэффициент поверхностного натяжения. Смачивание и не смачивание поверхности.
- •9. Капиллярный эффект. Определение высоты подъема или опускания мениска в капилляре.
- •10. Понятие вязкости. Коэффициенты кинематической и динамической вязкости. Ньютоновские жидкости.
- •11. Неньютоновские жидкости. Их законы трения и кривые течения.
- •12. Изменение вязкости среды при изменении ее температуры и давления.
- •13. Испарение жидкости и явление кавитации. Парциальное давление насыщенных паров.
- •14. Неоднородные системы. Их классификация и краткая характеристика.
- •15. Объемная и массовая доля дисперсной фазы. Связь между этими величинами. Плотность суспензии, эмульсии и парожидкостной смеси.
- •16. Вязкость неоднородных систем. Ее изменение при изменении температуры, давления и состава смеси.
- •17. Парожидкостной поток. Структура горизонтального потока и его показатели (плотность, паросодержание и коэффициент скольжения).
- •18. Методы исследования процессов, протекающих в холодильных установках (аналитический и экспериментальный). Достоинства и недостатки этих методов.
- •19. Синтетический метод исследования. Подобные явления.
- •20. Теория подобия. Условия подобия явлений.
- •21. Теоремы подобия. Первая теорема Ньютона и ее доказательство. Вторая и третья теоремы подобия. Пи – теорема Бэкингема.
- •22. Теория подобия и ее применение к исследованию процессов перемещения жидкостей и газов.
- •23. Подобное преобразование дифференциальных уравнений. Критерии гидродинамического напора.
- •24. Классификация сил, действующих в жидкости. Поверхностные и объемные силы и их определение.
- •25. Поверхностные силы. Напряжения поверхностных сил (нормальные и касательные). Расчет напряжений.
- •26. Понятие гидростатического и атмосферного давлений. Единицы измерения связь между ними.
- •27. Относительное, абсолютное и другие виды давлений связь между ними. Пьезометрическая высота.
- •28. Свойства гидростатического давления. Доказательство независимости величины давления от ориентации площадки в пространстве.
- •29. Вывод обобщенного дифференциального уравнения равновесия покоящейся жидкости. Его анализ.
- •30. Поверхности равного давления при абсолютном и относительном покое. Относительный покой в жидкости, находящейся в сосуде движущимся горизонтально и равноускорено.
- •31. Поверхности равного давления в сосуде, равномерно вращающемся вокруг горизонтальной и вертикальной оси.
- •32. Вывод основного уравнения гидростатики и его анализ.
- •33. Эпюры гидростатического давления. Методика их построения.
- •34. Приборы для измерения давления. Манометры u – образный и диафрагменный. Устройство и принцип действия.
- •35. Закон сообщающихся сосудов. Гидравлический уровень.
- •36 Закон Паскаля. Гидравлический пресс.
- •37. Точка приложения силы гидростатического давления, действующей на плоскую стенку. Эксцентриситет давления.
- •38. Давление жидкости на цилиндрические поверхности. Расчет силы давления. Тело давления.
- •39. Расчет болтовых соединений фланцевых разъемов сосудов, работающих под внутренним давлением.
- •40. Закон Архимеда. Условие плавания тел. Определение величины выталкивающей силы действующей на поплавковый регулятор
- •41. Классификация видов движения подвижных сред и методы описания движения жидкости (методы Эйлера и Лагранжа).
- •42. Кинематика жидкости. Основные понятия (линия тока, элементарная струйка) и определения (живое сечение струйки, смоченный периметр).
- •43. Поток и его характеристики: геометрические, кинематические и режимные
- •44. Уравнение неразрывности для элементарной струйки и потока реальной жидкости. Понятия массового и объемного расходов.
- •45. Вывод дифференциальных уравнений движения идеальной жидкости. (Уравнение л.Эйлера).
- •46. Вывод уравнения д.Бернулли для установившегося движения идеальной жидкости и анализ его составляющих.
- •47. Энергетический смысл и геометрическая интерпретация уравнения д. Бернулли для идеальной жидкости.
- •Энергетическое толкование уравнения
- •48. Уравнение д.Бернулли для потока реальной жидкости и его геометрическое и энергетическое представление. Корректив кинетической энергии потока. Коэффициент Кориолиса.
- •49 Дифференциальные уравнения движения реальных жидкостей (уравнения Навье-Стокса). Критерии гидродинамического подобия.
- •50 Опыты о. Рейнольдса. Критерий Рейнольдса. Ламинарный, турбулентный и переходной режимы движения жидкости.
- •52. Средняя, максимальная и местная скорость потока. Закон распределения скорости по сечению потока (закон Стоксa). Соотношение между максимальной и средней скоростями потока при ламинарном режиме.
- •53. Расчет расхода жидкости при ламинарном режиме движения (уравнение Пуазейля).
- •54. Течение жидкости в малом зазоре. Уравнение Петрова.
- •55. Турбулентный поток и его структура. Интенсивность пульсаций и турбулентная вязкость потока. Закон распределения скорости по сечению потока
- •10.2.1 Пульсация скоростей в турбулентном потоке
- •56. Гидравлические потери по длине трубопровода. Вывод уравнения Дарси –Вейсбаха. Коэффициент гидравлического трения.
- •11.1.1 Уравнение дарси-вейсбаха
- •57. Графики и. Никурадзе. Абсолютная и относительная шероховатости труб. Понятие гидравлически гладких и шероховатых труб.
- •58. Понятие местного сопротивления. Основные виды местных сопротивлений. Расчет потерь напора на их преодоление. Эквивалентная длина местных сопротивлений.
- •59. Внезапное расширение потока. Расчет потерь напора (уравнение Борда).
- •60. Классификация трубопроводов. Расчет диаметра трубопровода. Понятие экономичной скорости.
- •61. Простой трубопровод. Расчет потерь напора в трубопроводе. Кривые потребного напора простого трубопровода.
- •62. Последовательное и параллельное соединение простых трубопроводов. Построение результирующих линий потребного напора.
- •63. Понятие гидравлического удара. Формула Жуковского. Определение величины повышения давления при прямом полном и неполном гидравлическом ударе.
- •64. Истечение жидкости через отверстие в тонкой стенке при постоянном напоре.
- •65. Истечение жидкости через насадок. Определение глубины вакуума в насадке.
- •66. Истечение жидкости через отверстие в днище при переменном напоре. Время опорожнения емкости.
- •1. Предмет и место дисциплины «Механика жидкости и газа» в ряду общеинженерных дисциплин.
- •2. Этапы развития науки «Механика жидкости и газа». Вклад российских ученых в развитие данной науки.
34. Приборы для измерения давления. Манометры u – образный и диафрагменный. Устройство и принцип действия.
Все приборы для измерения давления можно разделить на две группы: жидкостные приборы и прибору с упругим элементом. К жидкостным приборам относят: пьезометр, U–образный манометр, тягонапоромер и микроманометр. В приборах давления в качестве чувствительного упругого элемента может применяться трубчатая тонкостенная пружина, эластичная мембрана.
Дифференциальный U–образный манометр позволяет определит разность давлений в сосудах. Непременным условием работы манометра является наличии в коленах жидкости, не смешивающейся с жидкостями в соседе. Чаще всего такой разделяющей жидкостью является ртуть.
На
рисунке 4.9 приведена схема такого
манометра. Выберем плоскость отсчета
0-0 где давление в левой ветви
и давление в правой ветви
манометра будут одинаковы, т.к. жидкость
находится в состоянии покоя. В этом
случае можно записать
Р
исунок
4.9 – Схема U–образного
дифференциального манометра.
рА
+
А
qhA=
рB
+
BqhB+
РТ
qhРТ
Откуда
т.е. при заданных условиях возникает разница пьезометрических напоров в обоих плечах манометра hрт которая характеризует разницу абсолютных давлений в сосудах А и В.
Рисунок 4.10 – Схема мембранного манометра:
1
-мембрана,
2-шток, 3-циферблат, 4 корпус
На рисунке представлена схема принцип действия манометра с упругим элементом – мембранной.
Полость под мембранной соединяется с пространством, где измеряется давление, величина которого рм. В полости над мембранной давление атмосферное.
Мембрана деформируется под действием результирующей силы
R=(рм–рА)
S.
где S –площадь действия давлений (площадь мембраны). Т.к. деформация вызывает перемещение штока 2 пропорционально разности давлений (рм–рА)
то эту разность давлений прибор будет показывать.
35. Закон сообщающихся сосудов. Гидравлический уровень.
Сообщающиеся сосуды - это сосуды соединенные друг с другом таким образом, что жидкость, их заполняющая, может перетекать из одного сосуда в другой и обратно (см. рисунок 6.1).
Р
исунок
6.1- К выводу закона сообщающихся сосудов
Пусть
жидкость, заполняющая сосуды А и В,
находится в состоянии покоя. Эти сосуды
открыты в атмосферу и на свободной
поверхности жидкости действует
атмосферное давление
.Выделим
сечение С, в центральной точке которого,
давление
от гидростатического столба жидкости
в сосуде А, будет равно давлению
от столба жидкости в сосуде В. По основному
уравнению гидростатики составим
уравнение равновесия:
,
(6.1)
Откуда после сокращения получим:
Так
как жидкость, наполняющая сосуды одна
и та же и имеет возможность перетекать
из одного сосуда в другой и обратно, то
.
Из чего следует, что:
,
(6.2)
т.е. уровни жидкости, находящейся в сообщающихся сосудах всегда одинаковы.
Этот закон сообщающихся сосудов используется в техническом устройстве, называемом гидравлическим уровнем. С его помощью устанавливают и разносят высотные отметки.