
- •ВВЕДЕНИЕ
- •1. ОСНОВНЫЕ ПОНЯТИЯ И АКСИОМЫ СТАТИКИ ТВЕРДОГО ТЕЛА
- •1.1. Основные понятия и определения
- •1.2. Аксиомы статики
- •1.3. Основные типы реакций связей
- •1.3.1. Свободное опирание тела о связь
- •1.3.3. Стержневая связь
- •1.3.4. Шарнирно-подвижная опора
- •1.3.5. Шарнирно-неподвижная опора
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •2. ПЛОСКАЯ СИСТЕМА СИЛ
- •2.1. Различные формы условий равновесия плоской системы сил
- •2.2. Центр параллельных сил
- •3. КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА
- •3.1. Способы задания движения точки
- •3.1.1. Естественный способ задания движения точки
- •3.1.2. Координатный способ задания движения точки
- •3.2. Простейшие движения твердого тела
- •3.2.1. Поступательное движение
- •3.2.2. Вращательное движение
- •4. СЛОЖНОЕ ДВИЖЕНИЕ
- •4.1. Сложное движение точки
- •4.1.1. Относительное, переносное и абсолютное движение
- •4.1.2. Теорема о скорости точки в сложном движении
- •4.1.3. Плоскопараллельное движение твердого тела
- •4.1.4. Разложение плоскопараллельного движения на поступательное и вращательное
- •4.1.5. Скорость точки плоской фигуры
- •5. ОСНОВНЫЕ ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •5.1. Основные положения динамики. Аксиомы динамики
- •5.2. Дифференциальные уравнения движения материальной точки
- •5.3. Две основные задачи динамики точки
- •6. ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ
- •6.1. Динамические дифференциальные уравнения относительного движения материальной точки
- •6.2. Частные случаи динамической теоремы Кориолиса
- •7. ДИНАМИКА ТВЕРДОГО ТЕЛА
- •7.1. Понятие о механической системе
- •7.2. Принцип Даламбера
- •7.3. Уравнение динамики вращающегося тела
- •7.4. Моменты инерции простейших однородных тел
- •8. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ МЕХАНИКИ
- •8.1. Обобщенные координаты
- •8.2. Возможные перемещения
- •8.3. Принцип возможных перемещений
- •9. ОСНОВЫ ТЕОРИИ КОЛЕБАНИЙ, ТЕОРИИ УДАРА
- •9.1. Устойчивость положения равновесия
- •9.2. Колебания системы с одной степенью свободы
- •9.3. Общие положения теории удара
- •10. ЗАДАЧИ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
- •10.1. Основные допущения
- •10.2. Напряжения
- •10.3. Перемещения и деформации. Закон Гука
- •11. Растяжение и сжатие
- •11.1. Диаграмма растяжения
- •11.2. Методы расчета строительных конструкций
- •12. Геометрические характеристики плоских сечений
- •12.1. Моменты инерции сечения
- •12.2. Момент инерции при параллельном переносе осей
- •13. ИЗГИБ И КРУЧЕНИЕ СТЕРЖНЕЙ
- •13.1. Расчеты на прочность при кручении стержней. Крутящий момент. Построение эпюр
- •13.2. Расчеты на прочность при изгибе стержней
- •14. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
- •14.1. Основные понятия
- •14.2. Формула Эйлера для критической силы
- •14.3. Влияние способа закрепления концов стержня на значение критической силы
- •14.4. Практический расчет сжатых стержней
- •15. ТЕОРИЯ ТОНКИХ ПЛАСТИН
- •15.1. Основные понятия и гипотезы
- •15.2. Соотношения между деформациями и перемещениями
- •15.3. Напряжения и усилия в пластинке
- •15.4. Усилия в пластинке
- •15.5. Дифференциальное уравнение изогнутой поверхности пластинки
- •16. Динамическое нагружение
- •16.1. Динамические расчеты элементов конструкций. Ударная нагрузка, коэффициент динамичности
- •16.2. Вычисление напряжений при равноускоренном движении
- •16.3. Определение перемещений и напряжений при ударе
- •16.4. Частные случаи
- •17. ПРОЧНОСТЬ МАТЕРИАЛОВ ПРИ ЦИКЛИЧЕСКИ МЕНЯЮЩИХСЯ НАПРЯЖЕНИЯХ
- •17.1. Усталостное разрушение материала
- •17.2. Характеристики циклов напряжений
- •17.3. Предел выносливости
- •17.4. Факторы, влияющие на усталостную прочность материала
- •18. ПРОБЛЕМЫ ТЕОРИИ МЕХАНИЗМОВ И МАШИН
- •18.1. Классификация кинематических пар
- •18.2. Структура и кинематика плоских механизмов
- •18.3. Структурная формула кинематической цепи общего вида
- •18.4. Структурная формула плоских механизмов
- •18.5. Пассивные связи и лишние степени свободы
- •18.6. Замена в плоских механизмах высших кинематических пар низшими
- •18.7. Классификация плоских механизмов
- •18.8. Структурные группы пространственных механизмов
- •19. Анализ механизмов
- •19.1. Кинематический анализ механизмов
- •19.1.1. Графическое определение положений звеньев механизма и построение траектории
- •19.1.2. Определение скоростей и ускорений точек звеньев методом планов
- •19.1.3. Свойство планов скоростей
- •19.1.4. Свойства плана ускорений
- •19.1.5. Построение плана скоростей и ускорений кулисного механизма (рис. 19.5)
- •19.2. Силовой анализ механизмов
- •19.2.1. Условие статической определимости кинематических цепей
- •19.2.2. Силы, действующие на звенья механизма
- •19.2.3. Силы инерции звена, совершающего возвратно-поступательное движение
- •19.2.4. Силы инерции звена, совершающего вращательное движение вокруг неподвижной оси
- •19.2.5. Силы инерции звена, совершающего плоское движение (рис. 19.14)
- •19.3.1. Силовой расчет начального звена (рис. 19.15, а)
- •20. Общие сведения о проектировании машин
- •20.1. Стадии проектирования
- •20.2. Основные термины и определения
- •21. Передачи. общие вопросы
- •21.1. Назначение и классификация передач
- •21.2. Классификация передач
- •21.3. Основные кинематические характеристики передач
- •21.4. Передачи с постоянным передаточным числом
- •21.5. Передачи с переменным передаточным числом
- •22. Зубчатые передачи
- •22.1. Общие сведения
- •22.2. Механизмы с высшими парами
- •22.2.1. Зубчатые передачи
- •22.2.2. Геометрические элементы зубчатых колес
- •22.3. Зубчатые механизмы с подвижными осями
- •22.4. Расчет основных геометрических параметров цилиндрических прямозубых колес
- •22.5. Расчет основных геометрических параметров конических прямозубых колес
- •23. Зубчатые редукторы. Общие сведения
- •23.1. Классификация редукторов
- •23.2. Принципиальная конструкция цилиндрического редуктора
- •23.3. Расчет основных конструктивных параметров редукторов
- •24. Ременные передачи
- •24.1. Общие сведения
- •24.1.1. Классификация
- •24.2. Кинематические и силовые зависимости
- •24.2.1. Напряжения в ремне
- •24.2.2. Относительное скольжение ремня
- •25. Цепные передачи
- •25.1. Общие вопросы
- •25.2. Классификация цепных передач
- •25.3. Достоинства и недостатки цепных передач
- •25.4. Детали цепных передач
- •25.5. Основные параметры цепных передач
- •26. ОСИ И ВАЛЫ
- •26.1. Общие сведения
- •26.2. Проектный расчет валов и осей
- •26.2.1. Составление расчетных схем
- •26.2.2. Расчёт опасного сечения
- •26.3. Проверочные расчеты валов и осей
- •26.3.1. Расчет на выносливость валов и осей
- •26.3.2. Расчет валов и неподвижных осей на статическую прочность
- •26.4. Проверочный расчет валов и осей на жесткость
- •27. ПОДШИПНИКИ, МУФТЫ
- •27.1. Подшипники
- •27.1.1. Подшипники скольжения
- •27.1.2. Подшипники качения
- •27.2. Муфты
- •27.2.1. Волновые передачи
- •заключение
- •Библиографический список

S
_
O V
O
Рис. 4.8
5. ОСНОВНЫЕ ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
5.1.Основные положения динамики. Аксиомы динамики
Вдинамике механическое движение рассматривается не только с точки зрения геометрических форм движения, но и выясняются факторы, вызывающие те или иные виды движений. Динамика изучает движение материальных тел под действием сил.
Воснове динамики лежат следующие аксиомы.
Аксиома 1 (принцип инерции). Всякая изолированная
материальная точка находится в состоянии покоя или равномерного и прямолинейного движения, пока приложенные силы не выведут ее из этого состояния.
Принцип инерции лежит в основе статики и динамики потому, что содержит в себе как аксиому инерции покоя (статика), так и аксиому инерции движения (динамика). Если на материальное тело (точку) не действуют никакие силы или
действует уравновешенная система сил (∑Fk=0, ∑Mo(F)=0), то относительно неподвижной (инерциальной ) системы отсчета скорость тела (точки) v=const. Но при v=0 имеем состояние
покоя, а при v≠0 (точка движется равномерно и прямолинейно)
– состояние динамического равновесия.
26
Только приложенная сила может вывести материальную точку из состояния инерции, но из кинематики известно, что начало движения материальной точки из состояния покоя либо нарушение ее прямолинейного или равномерного движения связано с возникновением ускорения. Аксиома 2 устанавливает зависимость между внешней силой, действующей на материальную точку, и возникшим вследствие этого ускорением.
Аксиома 2 (основной закон динамики). Ускорение ма-
териальной точки пропорционально действующей силе и направлено по линии, вдоль которой действует эта сила:
F=ma.
На все материальные тела вблизи Земли действует сила тяжести G, и при свободном падении на Землю тела любой массы m приобретают одно и тоже ускорение g, которое называется ускорением свободного падения. Для свободно падающего тела можно записать:
G=mg.
Сила тяжести тела в ньютонах равна произведению его массы на ускорение свободного падения.
Аксиома 3 (закон независимости действия сил). Если к материальной точке приложена система сил, то движение этой точки складывается из тех движений, которые точка могла бы иметь под действием каждой силы в отдельности.
Таким образом, при одновременном действии на материальную точку массой m, например, четырех сил (рис. 5.1) ускорение a , полученное точкой, можно определить, геометрически сложив ускорения a1, a2, a3, a4, возникшие под действием каждой силы в отдельности. В то же время ускорение a про-
порционально равнодействующей F∑ тех же сил:
F∑=ma,
где F∑=∑Fk и a=∑ak .
27

Рис. 5.1
Аксиома 4 (закон действия и противодействия). Две ма-
териальные точки действуют друг на друга с силами, равными по модулю и направленными в противоположные стороны.
Так как каждая сила приложена к своей точке, то силы взаимодействия между двумя материальными точками не уравновешивают друг друга. Каждая из этих сил сообщает ускорение той материальной точке, на которую действует, согласно аксиоме 2,. Все ускорения материальных точек относительно неподвижной системы отсчета есть результат взаимодействия материальных точек, а в общем случае – результат взаимодействия материальных тел.
Свободной называется материальная точка, движение которой в пространстве не ограничено наложенными связями.
В различных системах координат можно вывести дифференциальные уравнения движения материальной точки, используя основной закон динамики. Для несвободной точки можно получить дифференциальные уравнения движения так же, как и для свободной, если ко всем приложенным к точке силам, в соответствии с аксиомой о связях и силах реакций связей, добавить силы реакций связей.
28

5.2. Дифференциальные уравнения движения материальной точки
Если обозначить равнодействующую всех заданных сил
и сил реакций связей F, а массу точки |
m, получим |
F=ma. |
(5.1) |
Если ускорение a выразить через радиус-вектор (рис. 5.2), получим
a=d2r/dt2.
Рис. 5.2
В векторной форме дифференциальное уравнение движения материальной точки имеет вид
md2r/dt2=F. (5.2)
Проецируя уравнение (5.1) или (5.2) на координатные оси, получим дифференциальные уравнения движения точки в проекциях на эти оси.
В декартовой системе координат:
max=Fx; may=Fy; maz=Fz.
Через вторые производные по времени от координат движущейся точки можно выразить проекции ускорения на координатные оси:
29