
- •ВВЕДЕНИЕ
- •1. ОСНОВНЫЕ ПОНЯТИЯ И АКСИОМЫ СТАТИКИ ТВЕРДОГО ТЕЛА
- •1.1. Основные понятия и определения
- •1.2. Аксиомы статики
- •1.3. Основные типы реакций связей
- •1.3.1. Свободное опирание тела о связь
- •1.3.3. Стержневая связь
- •1.3.4. Шарнирно-подвижная опора
- •1.3.5. Шарнирно-неподвижная опора
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •2. ПЛОСКАЯ СИСТЕМА СИЛ
- •2.1. Различные формы условий равновесия плоской системы сил
- •2.2. Центр параллельных сил
- •3. КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА
- •3.1. Способы задания движения точки
- •3.1.1. Естественный способ задания движения точки
- •3.1.2. Координатный способ задания движения точки
- •3.2. Простейшие движения твердого тела
- •3.2.1. Поступательное движение
- •3.2.2. Вращательное движение
- •4. СЛОЖНОЕ ДВИЖЕНИЕ
- •4.1. Сложное движение точки
- •4.1.1. Относительное, переносное и абсолютное движение
- •4.1.2. Теорема о скорости точки в сложном движении
- •4.1.3. Плоскопараллельное движение твердого тела
- •4.1.4. Разложение плоскопараллельного движения на поступательное и вращательное
- •4.1.5. Скорость точки плоской фигуры
- •5. ОСНОВНЫЕ ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
- •5.1. Основные положения динамики. Аксиомы динамики
- •5.2. Дифференциальные уравнения движения материальной точки
- •5.3. Две основные задачи динамики точки
- •6. ДИНАМИКА ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ
- •6.1. Динамические дифференциальные уравнения относительного движения материальной точки
- •6.2. Частные случаи динамической теоремы Кориолиса
- •7. ДИНАМИКА ТВЕРДОГО ТЕЛА
- •7.1. Понятие о механической системе
- •7.2. Принцип Даламбера
- •7.3. Уравнение динамики вращающегося тела
- •7.4. Моменты инерции простейших однородных тел
- •8. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ МЕХАНИКИ
- •8.1. Обобщенные координаты
- •8.2. Возможные перемещения
- •8.3. Принцип возможных перемещений
- •9. ОСНОВЫ ТЕОРИИ КОЛЕБАНИЙ, ТЕОРИИ УДАРА
- •9.1. Устойчивость положения равновесия
- •9.2. Колебания системы с одной степенью свободы
- •9.3. Общие положения теории удара
- •10. ЗАДАЧИ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ
- •10.1. Основные допущения
- •10.2. Напряжения
- •10.3. Перемещения и деформации. Закон Гука
- •11. Растяжение и сжатие
- •11.1. Диаграмма растяжения
- •11.2. Методы расчета строительных конструкций
- •12. Геометрические характеристики плоских сечений
- •12.1. Моменты инерции сечения
- •12.2. Момент инерции при параллельном переносе осей
- •13. ИЗГИБ И КРУЧЕНИЕ СТЕРЖНЕЙ
- •13.1. Расчеты на прочность при кручении стержней. Крутящий момент. Построение эпюр
- •13.2. Расчеты на прочность при изгибе стержней
- •14. УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ
- •14.1. Основные понятия
- •14.2. Формула Эйлера для критической силы
- •14.3. Влияние способа закрепления концов стержня на значение критической силы
- •14.4. Практический расчет сжатых стержней
- •15. ТЕОРИЯ ТОНКИХ ПЛАСТИН
- •15.1. Основные понятия и гипотезы
- •15.2. Соотношения между деформациями и перемещениями
- •15.3. Напряжения и усилия в пластинке
- •15.4. Усилия в пластинке
- •15.5. Дифференциальное уравнение изогнутой поверхности пластинки
- •16. Динамическое нагружение
- •16.1. Динамические расчеты элементов конструкций. Ударная нагрузка, коэффициент динамичности
- •16.2. Вычисление напряжений при равноускоренном движении
- •16.3. Определение перемещений и напряжений при ударе
- •16.4. Частные случаи
- •17. ПРОЧНОСТЬ МАТЕРИАЛОВ ПРИ ЦИКЛИЧЕСКИ МЕНЯЮЩИХСЯ НАПРЯЖЕНИЯХ
- •17.1. Усталостное разрушение материала
- •17.2. Характеристики циклов напряжений
- •17.3. Предел выносливости
- •17.4. Факторы, влияющие на усталостную прочность материала
- •18. ПРОБЛЕМЫ ТЕОРИИ МЕХАНИЗМОВ И МАШИН
- •18.1. Классификация кинематических пар
- •18.2. Структура и кинематика плоских механизмов
- •18.3. Структурная формула кинематической цепи общего вида
- •18.4. Структурная формула плоских механизмов
- •18.5. Пассивные связи и лишние степени свободы
- •18.6. Замена в плоских механизмах высших кинематических пар низшими
- •18.7. Классификация плоских механизмов
- •18.8. Структурные группы пространственных механизмов
- •19. Анализ механизмов
- •19.1. Кинематический анализ механизмов
- •19.1.1. Графическое определение положений звеньев механизма и построение траектории
- •19.1.2. Определение скоростей и ускорений точек звеньев методом планов
- •19.1.3. Свойство планов скоростей
- •19.1.4. Свойства плана ускорений
- •19.1.5. Построение плана скоростей и ускорений кулисного механизма (рис. 19.5)
- •19.2. Силовой анализ механизмов
- •19.2.1. Условие статической определимости кинематических цепей
- •19.2.2. Силы, действующие на звенья механизма
- •19.2.3. Силы инерции звена, совершающего возвратно-поступательное движение
- •19.2.4. Силы инерции звена, совершающего вращательное движение вокруг неподвижной оси
- •19.2.5. Силы инерции звена, совершающего плоское движение (рис. 19.14)
- •19.3.1. Силовой расчет начального звена (рис. 19.15, а)
- •20. Общие сведения о проектировании машин
- •20.1. Стадии проектирования
- •20.2. Основные термины и определения
- •21. Передачи. общие вопросы
- •21.1. Назначение и классификация передач
- •21.2. Классификация передач
- •21.3. Основные кинематические характеристики передач
- •21.4. Передачи с постоянным передаточным числом
- •21.5. Передачи с переменным передаточным числом
- •22. Зубчатые передачи
- •22.1. Общие сведения
- •22.2. Механизмы с высшими парами
- •22.2.1. Зубчатые передачи
- •22.2.2. Геометрические элементы зубчатых колес
- •22.3. Зубчатые механизмы с подвижными осями
- •22.4. Расчет основных геометрических параметров цилиндрических прямозубых колес
- •22.5. Расчет основных геометрических параметров конических прямозубых колес
- •23. Зубчатые редукторы. Общие сведения
- •23.1. Классификация редукторов
- •23.2. Принципиальная конструкция цилиндрического редуктора
- •23.3. Расчет основных конструктивных параметров редукторов
- •24. Ременные передачи
- •24.1. Общие сведения
- •24.1.1. Классификация
- •24.2. Кинематические и силовые зависимости
- •24.2.1. Напряжения в ремне
- •24.2.2. Относительное скольжение ремня
- •25. Цепные передачи
- •25.1. Общие вопросы
- •25.2. Классификация цепных передач
- •25.3. Достоинства и недостатки цепных передач
- •25.4. Детали цепных передач
- •25.5. Основные параметры цепных передач
- •26. ОСИ И ВАЛЫ
- •26.1. Общие сведения
- •26.2. Проектный расчет валов и осей
- •26.2.1. Составление расчетных схем
- •26.2.2. Расчёт опасного сечения
- •26.3. Проверочные расчеты валов и осей
- •26.3.1. Расчет на выносливость валов и осей
- •26.3.2. Расчет валов и неподвижных осей на статическую прочность
- •26.4. Проверочный расчет валов и осей на жесткость
- •27. ПОДШИПНИКИ, МУФТЫ
- •27.1. Подшипники
- •27.1.1. Подшипники скольжения
- •27.1.2. Подшипники качения
- •27.2. Муфты
- •27.2.1. Волновые передачи
- •заключение
- •Библиографический список

9.3. Общие положения теории удара
Силы, действующие на тела, подразделяют на конечные силы, т.е. силы, изменяющие скорости точек в течение некоторого конечного промежутка времени, и силы мгновенные, или ударные, изменяющие скорости точек в течение весьма малого промежутка времени (0.1–0.01 с).
Силу, действующую в течение весьма малого промежутка времени, но достигающую при этом таких больших значений, что ее импульс за это время становится конечной величиной, называют мгновенной (ударной) силой.
Пусть F – ударная сила, τ – время действия этой силы, то-
τ
гда импульс за промежуток времени τ: S = ∫Fdt . Здесь S – ко-
0
нечная величина. Это возможно в случае, если величина силы
порядка 1/τ, где τ – малая величина. Импульс S называют ударным. Явление, при котором возникают мгновенные, или ударные, силы называютударом.
Рассмотрим на примере соударения двух тел А и В (рис. 9.3) процесс удара. Считаем, что контакт происходит в одной точке.
A |
|
B |
|
_ |
_, |
_ |
|
V |
V |
x |
|
1 |
F |
2 |
|
|
_ |
|
|
|
F |
|
|
Рис. 9.3
Тело А в момент соприкосновения имеет скорость V1, а тело В – скорость V2 (допустим, что V1> V2). Общую нормаль к поверхности соударяющихся тел в точке их контакта назовем линией удара.
53
Если центры масс соударяющихся тел лежат на линии удара, то удар называют центральным. Центральный удар называют прямым, если скорости центров масс соударяющихся тел в начале удара направлены по линии удара. Тела считаются абсолютно гладкими. После момента соприкосновения оба тела деформируются, при этом скорость тела А уменьшается, а скорость тела В увеличивается. Процесс деформации заканчивается тогда, когда скорости тел станут равными [27]. Эту
часть явления удара называют фазой деформации τ1. Ударный
τ1
импульс силы F за фазу деформации S1 = ∫Fdt .
0
Импульс силы F (F = −F ) за эту же фазу обозначим
S1 : S1 = −S1 . Если тела упруги, то после деформации они вос-
станавливают свою форму целиком и полностью. Эту часть явления удара называют фазой восстановления (продолжи-
тельность этой фазы τ2). Импульс ударной силы, действующей на тело А, за эту фазу восстановления
τ
S2 = ∫Fdt ,
τ1
где τ=τ1+τ2 (время продолжительности удара).
Эффект действия ударной силы оценивается по ее импульсу – конечной величине. Теоремы, применяемые к удару, формулируют так, чтобы в них входили не ударные силы, а ударные импульсы.
По коэффициенту восстановления k=S2/S1 оценивают упругость соударяющихся тел.
При k=0 величина S2=0, т.е. фаза восстановления отсутствует – абсолютно неупругий удар.
В случае k=1 величина S2=S1, можно считать, что тела полностью восстанавливают свою форму (абсолютно упругий удар) – это фаза восстановления.
Удар называют упругим при 0<k<1, при этом происходит удар тел средней упругости.
54