Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Иродов И.Е. Общая физика (5 т.) / Иродов. т3 Электромагнетизм. Основные законы_2014, 9-е изд, 319с.pdf
Скачиваний:
153
Добавлен:
28.03.2021
Размер:
2.11 Mб
Скачать

§ 2.1. Поле в веществе

Микро- и макрополе. Истинное электрическое поле в любом веществе — его называют микрополем — меняется весьма резко как в пространстве, так и во времени. Оно различно в разных точках атомов и промежутках между ними. Чтобы найти напряженность Е истинного поля в некоторой точке в данный момент, нужно было бы сложить напряженности полей всех отдельных заряженных частиц вещества — электронов и ядер. Решение этой задачи, очевидно, является совершенно нереальным. Да и сам результат оказался бы настолько сложным, что его просто нельзя было бы использовать. Более того, для решения макроскопических задач такое поле и вовсе не нужно. Для многих целей достаточно более простое и несравненно более грубое описание, которым мы и будем пользоваться в дальнейшем.

Под электрическим полем Е в веществе — его называют макрополем — мы будем понимать пространственно усредненное микрополе (после пространственного усреднения временное усреднение уже не требуется). Это усреднение проводится по так называемому физически бесконечно малому объему

объему, содержащему большое число атомов, но имеющему размеры во много раз меньше, чем те расстояния, на которых макрополе меняется заметно. Усреднение по таким объемам сглаживает все нерегулярные и быстро меняющиеся вариации микрополя на расстояниях порядка атомных, но сохраняет плавные изменения макрополя на макроскопических расстояниях. Итак, поле в веществе

E Eмакро UEмикроV.

(2.1)

46

Глава 2

 

 

Влияние вещества на поле. При внесении любого вещества в электрическое поле в веществе происходит смещение положительных и отрицательных зарядов (ядер и электронов), что в свою очередь приводит к частичному разделению этих зарядов. В тех или иных местах вещества появляются нескомпенсированные заряды различного знака. Это явление называют электростатической индукцией, а появившиеся в результате разделения заряды — индуцированными зарядами.

Индуцированные заряды создают дополнительное электрическое поле, которое вместе с исходным (внешним) электрическим полем образует результирующее поле. Зная внешнее поле и распределение индуцированных зарядов, можно при нахождении результирующего поля уже не обращать внимание на наличие самого вещества — его роль уже учтена с помощью индуцированных зарядов.

Таким образом, результирующее поле при наличии вещества определяется просто как суперпозиция внешнего поля и поля индуцированных зарядов. Однако во многих случаях дело усложняется тем, что мы заранее не знаем, как распределяются в пространстве все эти заряды — задача оказывается далеко не такой простой, как могло бы показаться вначале. Как мы увидим далее, распределение индуцированных зарядов в решающей степени зависит от свойств самого вещества — от его физической природы и формы тел. С этими вопросами нам и предстоит ознакомиться более подробно.

§ 2.2. Поле внутри и снаружи проводника

Внутри проводника Е 0. Поместим металлический проводник во внешнее электростатическое поле или сообщим ему ка- кой-нибудь заряд. В обоих случаях на все заряды проводника будет действовать электрическое поле, в результате чего все отрицательные заряды (электроны) сместятся против поля. Такое перемещение зарядов (ток) будет продолжаться до тех пор (практически это происходит в течение малой доли секунды), пока не установится определенное распределение зарядов, при котором электрическое поле во всех точках внутри проводника обратится в нуль. Таким образом, в статическом случае электрическое поле внутри проводника отсутствует (Е 0).

Проводник в электростатическом поле

47

 

 

Далее, поскольку в проводнике всюду Е 0, то плотность избыточных (нескомпенсированных) зарядов внутри проводника также всюду равна нулю ( 0). Это легко понять с помощью теоремы Гаусса. Действительно, так как внутри проводника Е 0, то и поток вектора Е сквозь любую замкнутую поверхность внутри проводника также равен нулю. А это и значит, что внутри проводника избыточных зарядов нет.

Избыточные заряды появляются лишь на поверхности проводника с некоторой плотностью , вообще говоря, различной в разных точках его поверхности. Заметим, что избыточный поверхностный заряд находится в очень тонком поверхностном слое (его толщина около одного-двух межатомных расстояний).

Отсутствие поля внутри проводника означает согласно (1.31), что потенциал в проводнике одинаков во всех его точках, т. е. любой проводник в электростатическом поле представляет собой эквипотенциальную область и его поверхность является эквипотенциальной.

Из того факта, что поверхность проводника эквипотенциальна, следует, что непосредственно у этой поверхности поле Е направлено по нормали к ней в каждой точке. Если бы это было не так, то под действием касательной составляющей Е заряды пришли бы в движение по поверхности проводника, т. е. равновесие зарядов было бы невозможным.

Пример. Найдем потенциал незаряженного проводящего шара, на расстоянии r от центра которого расположен точечный заряд q (рис. 2.1).

Потенциал всех точек шара одинаков. Раз так, вычислим его в центре шара О, ибо только для этой точки

расчет оказывается наиболее про- Рис. 2.1 стым:

 

1

 

q

,

(1)

 

 

4 0

 

r

 

где первое слагаемое — это потенциал от заряда q, а второе — потенциал от зарядов, индуцированных на поверхности шара. Но так как все индуцированные заряды находятся на одном и том же расстоянии а от точки О и суммарный инду-

Рис. 2.3
Рис. 2.2

48

Глава 2

 

 

цированный заряд равен нулю, то = 0. Таким образом, в данном случае потенциал шара будет определяться только первым слагаемым в (1).

На рис. 2.2 изображено поле и распределение зарядов для системы из двух проводящих шаров, один из которых (левый)

заряжен. Вследствие электрической индукции на поверхности правого незаряженного шара появились заряды противоположного знака. Поле этих зарядов в свою очередь вызовет некоторое перераспределение зарядов на поверхности левого шара — их распределение по поверхности станет неравномерным. Сплошными линиями на рисунке показаны линии вектора Е, пунктирными — пересечения эквипотенциальных поверхно-

стей с плоскостью рисунка. По мере удаления от этой системы эквипотенциальные поверхности становятся все более близкими к сферическим, а линии вектора Е приближаются к радиальным, и само поле становится все более близким к полю точечного заряда q — полному заряду данной системы.

Поле у поверхности проводника. Напряженность электрического поля непосредственно у поверхности проводника связана, как мы сейчас увидим, простым соотношением с локальной плотностью заряда на поверхности проводника. Эту связь можно легко установить с помощью теоремы Гаусса.

Пусть интересующий нас участок поверхности проводника граничит с вакуумом. Линии вектора Е перпендикулярны поверхности проводника, поэтому в качестве замкнутой поверхности возьмем небольшой цилиндр, расположив его так, как показано на рис. 2.3.

Тогда поток вектора Е через эту поверхность будет равен только потоку через «наружный» торец цилиндра (потоки через боковую поверхность и внутренний торец равны нулю), и мы имеем En S S/ 0, где En — проекция вектора Е на внешнюю