
- •Содержание
- •Предисловие к 4-му изданию
- •Принятые обозначения
- •§ 1.1. Электрическое поле
- •§ 1.2. Теорема Гаусса
- •§ 1.3. Применения теоремы Гаусса
- •§ 1.4. Теорема Гаусса в дифференциальной форме
- •§ 1.5. Циркуляция вектора Е. Потенциал
- •§ 1.6. Связь между потенциалом и вектором Е
- •§ 1.7. Электрический диполь
- •Задачи
- •§ 2.1. Поле в веществе
- •§ 2.2. Поле внутри и снаружи проводника
- •§ 2.3. Силы, действующие на поверхность проводника
- •§ 2.4. Свойства замкнутой проводящей оболочки
- •§ 2.6. Электроемкость. Конденсаторы
- •Задачи
- •§ 3.1. Поляризация диэлектрика
- •§ 3.2. Поляризованность Р
- •§ 3.3. Свойства поля вектора Р
- •§ 3.4. Вектор D
- •§ 3.5. Условия на границе
- •§ 3.6. Поле в однородном диэлектрике
- •Задачи
- •§ 4.1. Электрическая энергия системы зарядов
- •§ 4.3. Энергия электрического поля
- •§ 4.4. Система двух заряженных тел
- •§ 4.5. Силы при наличии диэлектрика
- •Задачи
- •§ 5.1. Плотность тока. Уравнение непрерывности
- •§ 5.2. Закон Ома для однородного проводника
- •§ 5.3. Обобщенный закон Ома
- •§ 5.4. Разветвленные цепи. Правила Кирхгофа
- •§ 5.5. Закон Джоуля–Ленца
- •Задачи
- •§ 6.1. Сила Лоренца. Поле В
- •§ 6.2. Закон Био–Савара
- •§ 6.3. Основные законы магнитного поля
- •§ 6.5. Дифференциальная форма основных законов магнитного поля
- •§ 6.6. Сила Ампера
- •§ 6.8. Работа при перемещении контура с током
- •Задачи
- •§ 7.1. Намагничение вещества. Намагниченность J
- •§ 7.2. Циркуляция вектора J
- •§ 7.3. Вектор Н
- •§ 7.4. Граничные условия для В и Н
- •§ 7.5. Поле в однородном магнетике
- •§ 7.6. Ферромагнетизм
- •Задачи
- •§ 8.1. Электромагнитное поле. Инвариантность заряда
- •§ 8.2. Законы преобразования полей Е и В
- •§ 8.3. Следствия из законов преобразования полей
- •§ 8.4. Инварианты электромагнитного поля
- •Задачи
- •§ 9.1. Закон электромагнитной индукции. Правило Ленца
- •§ 9.2. Природа электромагнитной индукции
- •§ 9.3. Явление самоиндукции
- •§ 9.4. Взаимная индукция
- •§ 9.5. Энергия магнитного поля
- •§ 9.6. Магнитная энергия двух контуров с токами
- •§ 9.7. Энергия и силы в магнитном поле
- •Задачи
- •§ 10.1. Ток смещения
- •§ 10.2. Система уравнений Максвелла
- •§ 10.3. Свойства уравнений Максвелла
- •§ 10.4. Энергия и поток энергии. Вектор Пойнтинга
- •§ 10.5. Импульс электромагнитного поля
- •Задачи
- •§ 11.1. Уравнение колебательного контура
- •§ 11.2. Свободные электрические колебания
- •§ 11.3. Вынужденные электрические колебания
- •§ 11.4. Переменный ток
- •Задачи
- •1. Единицы величин в СИ и системе Гаусса
- •3. Основные величины и единицы СИ
- •4. Греческий алфавит
- •5. Некоторые физические константы
- •Предметный указатель
Постоянный электрический ток |
125 |
|
|
§ 5.3. Обобщенный закон Ома
Сторонние силы. Если бы все действующие на носители тока силы сводились к силам электростатического поля, то под действием этих сил положительные носители перемещались бы из мест с большим потенциалом к местам с меньшим потенциалом, а отрицательные носители двигались бы в обратном направлении. Это вело бы к выравниванию потенциалов, и в результате все соединенные между собой проводники приобрели бы одинаковый потенциал — ток прекратится. Иными словами, при наличии лишь кулоновских сил стационарное поле должно быть полем статическим.
Чтобы этого не произошло, в цепи постоянного тока наряду с участками, где положительные носители тока движутся в сторону уменьшения потенциала , должны иметься участки, на которых перенос положительных носителей происходит в сторону возрастания , т. е против сил электрического поля. Перенос носителей на этих участках возможен лишь с помощью сил не электростатического происхождения. Это так называемые
сторонние силы.
Таким образом, для поддержания постоянного тока необходимы сторонние силы, действующие либо на отдельных участках цепи, либо во всей цепи. Физическая природа сторонних сил может быть весьма различной. Они могут быть обусловлены, например, химической и физической неоднородностью проводника — таковы силы, возникающие при соприкосновении разнородных проводников (гальванические элементы, аккумуляторы) или проводников различной температуры (термоэлементы) и др.
Обобщенный закон Ома. Для количественной характеристики сторонних сил вводят понятия поля сторонних сил и его напряженности Е*. Этот вектор численно равен сторонней силе, действующей на единичный положительный заряд.
Теперь обратимся к плотности тока. Если под действием электрического поля Е в проводнике возникает ток плотности j Е, то очевидно, что под совместным действием поля Е и поля сторонних сил Е* плотность тока
j (E + E*). |
(5.11) |
|
|

126 |
Глава 5 |
|
|
Это уравнение обобщает закон (5.10) на случай неоднородных участков проводящей среды. Оно выражает обобщенный закон Ома в локальной форме.
Закон Ома для неоднородного участка цепи. Неоднородным называют участок цепи, на котором действуют сторонние силы.
Рассмотрим частный, но практически важный случай, когда электрический ток течет вдоль тонких проводов. В этом случае направление тока будет совпадать с направлением оси провода и плотность тока j может считаться одинаковой во всех точках сечения провода. Пусть площадь сечения провода равна S, причем S может быть и не одинаковой по длине провода.
Разделим уравнение (5.11) на , полученное выражение умножим скалярно на элемент оси провода dl, взятый по направлению от сечения 1 к сечению 2 (его мы примем за положительное), и затем проинтегрируем по длине провода от сечения 1 до сечения 2:
2 |
jdl |
2 |
2 |
|
|
|
Edl E* dl. |
(5.12) |
|||
|
|||||
1 |
1 |
1 |
|
||
|
|
Преобразуем подынтегральное выражение у первого интеграла: заменим на 1/ и j dl на jl dl, где jl — проекция вектора j на направление вектора dl. Далее учтем, что jl — величина алгебраическая; она зависит от того, как направлен вектор j по отношению к dl: если j dl, то jl >0, если же j + dl, то jl < 0. И последнее, заменим jl на I/S, где I — сила тока, величина тоже алгебраическая (как и jl). Поскольку для постоянного тока I одинаково во всех сечениях цепи, эту величину можно вынести за знак интеграла. В результате получим
2 |
jdl |
2 |
dl |
|
|
|
|
|
I |
|
. |
(5.13) |
|
|
S |
|||||
1 |
1 |
|
|
|||
|
|
|
|
Выражение dl/S определяет не что иное, как сопротивление участка цепи длиной dl, а интеграл от этого выражения — полное сопротивление R участка цепи между сечениями 1 и 2.
Теперь обратимся к правой части (5.12). Первый интеграл здесь — это разность потенциалов 1 – 2, а второй интеграл представляет собой электродвижущую силу (э.д.с.) , действу-

Постоянный электрический ток |
127 |
|
|
ющую на данном участке цепи:
2 |
|
12 E* dl. |
(5.14) |
1 |
|
Эта величина, как и сила тока I, является алгебраической: если э.д.с. способствует движению положительных носителей тока в выбранном направлении, то 12 > 0, если же препятству-
ет, то 12 < 0.
После всех указанных преобразований уравнение (5.12) бу-
дет иметь следующий вид: |
|
RI 1 – 2 + 12, |
(5.15) |
где, напомним, положительным считается направление от точки 1 к точке 2.
Это уравнение выражает закон Ома для неоднородного участка цепи, в отличие от уравнения (5.11), представляющего тот же закон в локальной форме.
Пример. Рассмотрим участок цепи, показанный на рис. 5.2. Сопротив-
ление отлично от нуля только на |
|
|
отрезке R. На нижней части ри- |
|
|
сунка представлен ход потенциа- |
|
|
ла вдоль данного участка. Вы- |
|
|
ясним, что здесь происходит. |
|
|
Из того факта, что потенциал на |
|
|
отрезке R уменьшается слева на- |
|
|
право, следует, что I > 0, т. е. |
|
|
ток течет в положительном на- |
Рис. 5.2 |
|
правлении (от 1 к 2). В данном |
||
|
случае 1 < 2, но ток течет от точки 1 к точке 2 — в сторону большего значения потенциала. Это возможно лишь потому, что на данном участке имеется э.д.с. , действующая в положительном направлении (от 1 к 2).
Вернемся к (5.15). Из этого уравнения следует, что для замкнутой цепи точки 1 и 2 совпадают, 1 2 и оно приобретает
более простой вид: |
|
RI , |
(5.16) |

128 |
Глава 5 |
|
|
где R представляет собой уже полное сопротивление замкнутой цепи, а — алгебраическую сумму отдельных э.д.с. в данной цепи.
Далее представим себе участок цепи, содержащий сам источник э.д.с., — между его клеммами 1 и 2. Тогда в уравнении (5.15) для выбранного нами участка R — это внутреннее сопротивление источника, а 1 – 2 — разность потенциалов на его клеммах. Если источник разомкнут, то I = 0 и = 2 – 1, т. е. э.д.с. источника можно определить как разность потенциалов на его клеммах в разомкнутом состоянии.
Разность потенциалов на клеммах данного источника э.д.с., замкнутого на внешнее сопротивление, всегда меньше его э.д.с. Она зависит от внешней нагрузки.
Пример. Внешнее сопротивление цепи в , раз больше внутреннего сопротивления источника. Найдем отношение разности потенциалов на клеммах источника к его э.д.с.
Пусть Ri — внутреннее сопротивление источника, а Ra — внешнее сопротивление цепи. Согласно уравнению (5.15)2 – 1 – RiI, согласно же (5.16) (Ri + Ra)I . Из этих двух уравнений получим
2 1 |
1 |
Ri I |
1 |
Ri |
|
Ra |
|
, |
. |
|
|
|
|
|
|||||
|
|
|
Ri Ra |
|
Ri Ra |
1 , |
Отсюда видно, что чем больше ,, тем больше приближается разность потенциалов на клеммах источника к его э.д.с., и наоборот.
В заключение полезно привести наглядную картину, позволяющую лучше уяснить, что происходит в замкнутой цепи постоянного тока. На рис. 5.3 показано распределение потенциала вдоль замкнутой цепи, содержащей источник э.д.с. на участке АВ. Потенциал для наглядности отложен вдоль образующих цилиндрической поверхности, которая опирается на контур с током. Точки А и В соответствуют положи-
Рис. 5.3 тельной и отрицательной клеммам источника Из рисунка видно, что процесс протекания тока можно представить себе так: положительные заря-
ды-носители «соскальзывают» по наклонному «желобу» от точ-