Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЗ 3.docx
Скачиваний:
6
Добавлен:
24.09.2019
Размер:
6.28 Mб
Скачать

Физические основы азотирования

Азотирование – ХТО, состоящая из диффузионного насыщения поверхностного слоя стали азотом при нагревании в соответствующей среде [9].

Процесс азотирования сталей проводится в атмосфере частично диссоциированного аммиака:

Азотирование может быть низкотемпературным (500-600˚С) или высокотемпературным (600-1200˚С). Термическая диссоциация аммиака представляет собой ионизационный процесс, сопровождающийся образованием ионов в рабочем пространстве печи. Азотированию подвергаются стали перлитного, ферритного и аустенитного классов, а также чугуны и другие сплавы. В результате азотирования сталь приобретает высокую твердость на поверхности, не изменяющуюся при нагреве до 400-450˚С; высокую износостойкость и низкую склонность к задирам; высокий предел выносливости; высокую кавитационную стойкость; хорошую сопротивляемость коррозии в атмосфере, пресной воде и паре [9].

Свойства азотированного слоя

Азотирование железа не вызывает значительного повышения твердости. Высокой твердостью обладает лишь γ'-фаза и азотистый мартенсит α'. Все легирующие элементы уменьшают толщину азотированного слоя, но резко повышают твердость на поверхности и по сечению диффузионного слоя. Азотистая ε-фаза в большинстве случаев имеет пониженную твердость. Высока твердость зоны внутреннего азотирования, составляющей основную часть слоя, связана с образованием азотистого твердого раствора и выделением нитридов легирующих элементов, искажающих решетку матрицы и затрудняющих пластическую деформацию.

Высокая твердость азотированного слоя объясняется также и большой растворимостью азота в феррите, легированном переходными элементами. Растворенный азот приводит к возникновению высоких микронапряжений, релаксация которых ниже порога рекристаллизации затруднена. При последующем охлаждении фиксируется перенасыщенный азотом твердый раствор, склонный к старению. Старение в процессе охлаждения приводит к выделению из твердого раствора легированной γ'-фазы и нитридов легирующих элементов, добавочно повышающих твердость. Упрочнение зоны внутреннего азотирования за счет азотированного твердого раствора определяется из формулы:

∆σтр = 467СN,

CN – максимальная растворимость азота в чистом железе при данной температуре.

Конкретные условия эксплуатации требуют создания диффузионного слоя с развитием тех или иных фазовых и структурных составляющих, которые определяют работоспособность изделий в режиме коррозии, изнашивания, знакопеременных нагрузок и т. д.

Азотирование следует использовать для изделий, испытывающих высокие циклические нагрузки при умеренных контактных напряжениях, в условиях трения-скольжения или абразивного износа. Азотирование повышает сопротивление стали кавитационной эрозии.

Износостойкость азотированных сталей

Износостойкость – это сопротивление разрушению материала поверхностных слоев, вступающих в контактное взаимодействие при относительном перемещении двух тел под нагрузкой. Износостойкость является структурно-чувствительной характеристикой, она во многом определяет долговечность трущегося сопротивления [8,9].

Распространена точка зрения, что чем выше твердость, тем выше износостойкость. Поэтому часто для улучшения триботехнических характеристик исследователи идут по пути повышения поверхностной твердости, что достигается азотированием. Однако, если в зоне контакта реализуются не только деформационные процессы, но и физико-химические (в частности, имеющие диффузионную природу), прямая зависимость износостойкости от твердости нарушается. Это обстоятельство особенно важно иметь в виду, если проблемы износостойкости решаются технологическими методами направленного изменения свойств поверхностных слоев трущихся деталей.

С увеличением температуры и длительности азотирования несоответствие между твердостью азотированного слоя и износостойкостью возрастает, и, кроме того, оно зависит от состава стали. Например износостойкость стали 12Х13 выше, чем стали 38Х2МЮА, несмотря на меньшую твердость азотированного слоя, а износостойкость сталей 38Х2МЮА и 40Х, азотированных при 620˚С, существенно превышает износостойкость этих сталей, азотированных при 560˚С.

Азотированные стали являются многофазными материалами со сложной структурой, изменяющейся как в процессе обработки, так и эксплуатации в условиях трения и изнашивания.

На основе экспериментальных данных по твердости и износостойкости сталей перлитного класса 38Х2МЮА и 40Х, а также мартенситного класса 16Х2Н3МФБАЮШ и 25Х5М, отмечается сложная взаимосвязь между твердостью и износостойкостью в зависимости от температуры азотирования. Большая твердость слоя стали 38Х2МЮА, по сравнению со сталью 40Х, соответствует и большей ее износостойкости, что определяется именно структурой диффузионного слоя [9].

В аустенитных же сплавах наблюдается соответствие между твердостью и износостойкостью азотированного слоя в зависимости от температуры азотирования. Следовательно, азотирование по режиму, обеспечивающему получение максимальной твердости диффузионного слоя аустенитных сплавов, позволит создать более износостойкие поверхностные слои [9].

Результаты проведенных исследований разных сталей и сплавов в настоящее время дают основания полагать, что структура азотированного слоя, отвечающая максимальной твердости и соответствующая максимальной износостойкости, различна [10]. Связь износостойкости с величиной микродеформации кристаллической решетки подтверждена экспериментально для азотированных сталей 38Х2МЮА и 10Х3Г2МЮФТ после различных режимов шлифования и последующего отпуска.

Результаты исследований подтверждают существование представления о ведущей роли пластической деформации в процессе изнашивания. Более высокой износостойкостью обладают стали, способные упрочняться под действием пластической деформации, поскольку доля энергии, затрачиваемой на деформационное упрочнение, составляет 80…90% баланса всех энергетических затрат при изнашивании. Уменьшение микродеформации решетки матрицы должно повышать ее способность пластически деформироваться в процессе изнашивания [9,10].

Известно, что среди различных способов повышения износостойкости основными являются цементация, нитроцементация и азотирование, причем азотирование в последнее время уверенно завоевывает лидирующее положение. Использование сталей, упрочняемых азотированием, позволяет сократить технологический маршрут и снизить трудоемкость процесса изготовления деталей, работающих на износ при высоких контактных давлениях.

Более того, регулирование параметрами процесса азотирования и, следовательно, структурой азотированного слоя и структурой зоны контактного взаимодействия при трении, может быть сформирован слой высокой износостойкости, не требующий дополнительной обработки.

Выявление и управление структурными факторами, ответственными за износостойкость азотированных сталей, позволяет достигать увеличения ресурса работы деталей машин и оборудования.