Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Part 1.docx
Скачиваний:
1556
Добавлен:
27.03.2016
Размер:
10.09 Mб
Скачать

Контрольные вопросы

  1. Опишите принципы ОФЭКТ.

2. Какой тип коллиматоров и почему преимущественно используется в ОФЭКТ?

3. Какие потенциальные преимущества может принести применение коллиматоров с конусными или веерных каналами?

4. Что сильнее влияет на качество изображения: улучшение пространственного разрешения или увеличение числа отсчетов?

5. В чем недостаток круговых орбит?

  1. Какие преимущества и недостатки имеет применение многоголовочных систем ОФЭКТ перед одноголовочной?

  2. Как в ОФЭКТ производится корректировка ослабления излучения?

  3. Какая угловая выборка является оптимальной в ОФЭКТ?

  4. Какие методы реконструкции изображений получили наибольшее распространение в настоящее время?

  5. Объясните, как реконструируется изображение методом обратного проецирования в ОФЭКТ.

  6. В чем отличие метода фильтрованного обратного проецирования от метода простого обратного проецирования?

  7. Почему возникают в изображении "звездообразные" артефакты?

  8. Как производится устранение размытости изображений при их реконструкции методом обратного проецирования?

  9. Как производится уменьшение статистических флуктуаций в изображении при их реконструкции методом обратного проецирования?

  10. Гамма-камера имеет детектор NaI(Tl) диаметром 38 см. Данные набираются в матрицу 64 × 64. Чему равна частота Найквиста?

  11. В чем преимущества метода преобразований Фурье перед методом свертки?

  12. Истинно или ложно утверждение, что данные с высокой частотой представляют шум в реконструированном изображении ОФЭКТ?

  13. Объясните основные принципы итерационного метода реконструкции изображений.

  14. В чем отличительная особенность итерационного метода по сравнению с методом фильтрованного обратного проецирования?

  15. Что такое количественная ОФЭКТ и какая у нее главная цель?

  16. Какие факторы влияют на количественную ОФЭКТ?

  17. Опишите методы компенсации, применяемые в количественной ОФЭКТ, для случая однородного ослабления?

  18. Опишите методы компенсации, применяемые в количественной ОФЭКТ, для случая неоднородного ослабления?

  19. Каким образом проводится в количественной ОФЭКТ компенсация отклика детектора?

Список литературы

  1. Fahey F.H., Harkness B.A. Gamma camera SPECT systems and quality control // In: Nuclear medicine. 2nd edition. V. 1 / Ed. by R.E. Henkin, D. Bova, G.L. Dillehay et al. 2006. Mosby, Inc. P. 196 – 212.

  2. Muehllenehner G. Effect of resolution improvement on required count density in ECT imaging: a computed simulation // Phys. Med. Biol. V. 30. 1985. P. 163 – 173.

  3. Sensitivity, resolution and image quality with a multi-head SPECT camera. F.H. Fahey, B.A. Harkness, J.W. Keyes et al // J. Nucl. Med. V. 33. 1992. P. 1859 – 1863.

  4. Design and clinical utility of fan beam collimator for SPECT imaging of the head. B.M.W. Tsui, G.T. Gullberg, E.R. Edgerton et al // J. Nucl. Med. V. 27. 1986. P. 810 – 819.

  5. Jaszczak R.J., Greer K.L., Coleman R.E. SPECT using a specially designed cone beam collimator // J. Nucl. Med. V. 29. 1988. P. 1398 – 1405.

  6. Chang L.T. A method for attenuation correction in radionuclide computed tomography // IEEE Trans. Nucl. Sci. V.25. 1978. P. 638 – 643.

  7. Balley D.L. Transmission scanning in emission tomography // Eur. J. Nucl. Med. V. 25. 1998. P. 774 – 787.

  8. Gopal B. Saha. Physics and radiobiology of nuclear medicine. Third edition // Springer. (Cleveland, USA). 2010.

  9. Quantitative SPECT: basics and clinical consideration. B.M.W. Tsui, X.D. Zhao, E.C. Frey et al // Semin. Nucl. Med. V. 24. 1994. P. 38 – 65.

  10. Tsui B.M.W. Quantitative SPECT // In: Nuclear medicine. 2nd edition. V. 1 / Ed. by R.E. Henkin, D. Bova, G.L. Dillehay et al. 2006. Mosby, Inc. P. 223 – 245.

  11. Radionuclide emission computed tomography of the head with 99mTc and a scintillation Coleman camer. R.J. Jaszczak, P.H. Murphy, D. Huard et al // J. Nucl. Med. V. 18. 1977. P. 373 – 380.

  12. Key D.B., Keyes J.W. First order correction for absorption and resolution compensation in radionuclide Fourier tomography // J. Nucl. Med. V. 16. 1975. P. 540 – 541.

  13. Sorenson J.A. Quantitative measurement of radiation in vivo by whole body counting // In: Instrumentation in nuclear medicine. V.2. / Eds: Hine G.H., Sorenson J.A. New York. 1984. P. 311 – 348.

  14. Compensation of tissue absorption in emission tomography. S. Bellini, M. Piacentini, C. Cafforio et al // IEEE Trans. Acoust. Speech Signal Processing. V. 27. 1979. P. 213 – 218.

  15. Inouye T., Kose K., Hasegawa A. Image reconstraction algorithm for single-photon-emission computed tomography with uniform attenuation // Phys. Med. Biol. V. 34. 1989. P. 299 – 304.

  16. Tanaka E., Toyama H., Murayama H. Convolution image reconstruction for quantitative single photon emission computed tomography // Phys. Med. Biol. V. 29. 1984. P. 1489 -- 1500.

  17. Chang L.T. Attenuation correction in radionuclide computed tomography // IEEE Trans. Nucl. Sci. V. 25. 1978. P. 638 – 643.

  18. Chang L.T. Attenuation correction and incomplete projection in single photon emission computed tomography // IEEE Trans. Nucl. Sci. V. 26. 1979. P. 2780 – 2789.

  19. Shepp L.A. Vardi Y. Maximum likelihood reconstraction for emission tomography // IEEE Trans. Med. Imaging. V.1. 1982. P. 113 – 122.

  20. Comparison between ML-EM and WLS-CG algorithm for SPECT image reconstraction. B.M.W. Tsui, X.D. Zhao, E.C. Frey et al // IEEE Trans. Nucl. Sci. V. 38. 1991. P. 1766 – 1772.

  21. Lalus D.S., Tsui B.M.W. A generalised Gibbs prior for maximum a posteriori reconstruction in SPECT // Phys. Med. Biol. V. 38. 1993. P. 729 – 741.

  22. Levitan E., Herman G.T. A maximum a posterior probability expectation maximization algorithm for image reconstruction in emission tomography // IEEE Trans. Med. Imaging. V. 6. 1987. P. 183 – 192.

  23. Correction of nonuniform attenuation in cardiac SPECT imaging. B.M.W. Tsui, G.T. Gulberg, E.R. Edgerton et al // J. Nucl. Med. V. 30. 1989. P. 497 – 507.

  24. Two-dimensional filtering of SPECT images using the Metz and Wiener filters. M.A. King, R.B., Schwinger P.W. Doherty et al // J. Nucl. Med. V. 25. 1984. P. 1234 – 1240.

  25. King M.A., Schwinger P.W., Penney B.C. Variation of the count-dependent Metz filter with imaging system modulation transfer function // Med. Phys. V. 13. 1986. P. 139 – 149.

  26. A theoretivcal-correct algorithm to compensate for a 3D spatially-variant point spread function in SPECT imaging. B.R. Zeeberg, A.N. Bice, S. Loncaric et al // In: Proceedings of the 1987 international conference on information processing in medical imaging. New York. 1988. Plenum Press. P. 245 – 254.

  27. Appledorn C.R. An analytical solution to the nonstationary reconsruction problem in SPECT // Prog. Clin. Biol. Res. V. 363. 1991. P. 69 – 79.

  28. Edholm P.R., Lewitt R.M.K., Lindholm B. Novel properties of the Fourier decomposition of the sonogram // Proc. SPIE. V. 671. 1986. P. 8 – 18.

  29. Hawkins W.G., Leichner P.K., Yang N. The circular harmonic transform for SPECT reconstruction and boundary conditions on the Fourier transform of the sinogram // IEEE Trans. Med. Imaging. V. 7. 1988. P. 135 – 148.

  30. Implementation of simultaneous attenuation and detector response correction in SPECT. B.M.W Tsui, H.B. Hu, D.R. Gilland et al // IEEE Trans. Nucl. Sci. V. 35. 1988. P. 778 – 783.

  31. Formiconi A.R., Pupi A., Passeri A. Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique // Phys. Med. Biol. V. 34. 1990. P. 69 – 84.

  32. Zeng G.L., Guilberg G.T. Frequency domain implementation of three- dimensional geometric point response function correction in SPECT imaging // IEEE Trans. Nucl. Sci. V. 39. 1992. P. 1444 – 1453.

  33. The importance and implementation of accurate three-dimensional compensation methods for quantitative SPECT. B.M.W Tsui, E.C. Frey, X.D. Zhao et al // Phys. Med. Biol. V. 39. 1993. P. 509 – 530.

  34. Jaszczak R.J., Floyd C.E., Coleman R.E. Scatter compensation technique for SPECT // IEEE Trans. Nucl. Sci. V. 32. 1985. P. 786 – 793.

  35. King M.A., Hademenjs G., Glick S.J. A dual-photopeak window method for scatter correction // J. Nucl. Med. V. 33. 1992. P. 605 – 612.

  36. Floyd C.E., Jaszczak R.J., Coleman R.E. Inverse Monte Carlo: A unified reconstruction algorithm for SPECT // IEEE Trans. Nucl. Sci. V. 32. 1985. P. 779 – 985.

  37. Frey E.C., Tsui B.M.W. A practical method for incorporating scatter in a projector-backprojecror for accurate scatter compensation in SPECT // IEEE Trans. Nucl. Sci. V. 40. 1993. P. 1107 – 1116.

  38. Todd-Pokrotek A. The mathematics and physics of emission computerized tomography (ECT) // In: Emission Computed Tomography / Ed.:Esser P.D., Westerman B.R. New York: Society of Nuclear Medicine. 1983.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]