Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Part 1.docx
Скачиваний:
1556
Добавлен:
27.03.2016
Размер:
10.09 Mб
Скачать
    1. Собственное энергетическое разрешение

Собственное энергетическое разрешение является характеристикой приборной формы линии гамма-камеры и определяет ее способность идентифицировать события, относящиеся к области фотопика (рис. 3.15). Собственное энергетическое разрешение, в основном, связано со свойствами кристалла детектора.

Энергетическое разрешение кристалла NaI(Tl), определяемое как FWHM фотопика, выражается в процентах от энергии γ-кванта. Оно измеряется без коллиматора с помощью точечных источников 99mTc или 57Со (Eγ = 122 кэВ), отнесенных на расстояние не менее пяти диаметров полезного поля изображения. Энергетическое разрешение понижается с уменьшается энергии фотонов, так как FWHM уменьшается медленнее, чем сама энергия. Типичные значения внутреннего энергетического разрешения равны ~7 % для 137Cs и ~10 % для 99mTc. При измерении разрешения с коллиматором наблюдается небольшое увеличение разрешения в результате эффекта рассеяния излучения на малые углы от стенок коллиматора и образования в свинце коллиматора характеристического 74 кэВ излучения.

    1. Рассеяние в пациенте и коллиматоре

Одна из проблем, возникающих при визуализации распределений низкоэнергетического γ-излучения заключается в трудности отсеивания импульсов от фотонов, рассеянных внутри пациента и в коллиматоре. На рис. 3.15 демонстрируется влияние рассеяния на форму спектра от источника 99mTc.

С уменьшением энергии доля энергии, теряемой фотонами при одном и том же угле комптоновского рассеяния, уменьшается. Так, например, 10 % изменение энергии для 364-кэВ γ-квантов происходит при угле рассеяния ~ 22-градусов, в то время как для 140-кэВ γ-квантов такое относительное изменение энергии соответствует комптоновскому рассеянию на 53-градуса. Отсюда вытекает, что 20 % энергетическое окно (типичное для ядерной визуализации), будет пропускать фотоны, рассеянные на значительно большие углы в случае низкой первичной энергии γ-излучения, чем это имеет место при высоких энергиях. Этот эффект уменьшает разрешение системы, так как местоположение точки рассеяния на такие большие углы неточно описываются пространственными позиционными сигналами.

Рис. 3.15. Спектр импульсов от источника 99mTc, измеренный гамма-камерой с низкоэнергетическим коллиматором: ▬▬ – только с коллиматором; ─ ▪ ─ ─ коллиматор плюс плексиглас толщиной 10 см между источником и коллиматором [5]

Устранение импульсов от рассеянных фотонов достаточно затруднительно, так как гамма-камеры традиционно проектируются и настраиваются на работу с симметричными окнами. Произвольное использование асимметричных окон ухудшает однородность чувствительности вдоль поверхности кристалла [6]. Тем не менее, некоторые производители спроектировали гамма-камеры, работающие с асимметричными окнами без потери однородности. Другие пошли по пути разработки компьютерных алгоритмов, которые устраняют селективно импульсы, образованные рассеянными γ-квантами [7].

    1. Пространственная однородность, линейность и энергетическая чувствительность

      1. Собственная пространственная однородность

Собственная пространственная однородность (неоднородность) изображения характеризует вариабельность скорости счета гамма-камеры при ее облучении однородным потоком фотонов. Неоднородность изображения – специфические искажения, присущие гамма-камере [3].

Вполне естественно желание иметь у гамма-камер однородный отклик по всему обозреваемому полю. Это означает, что точечный источник независимо от его расположения в поле обзора должен генерировать одинаковую скорость счета в детекторе. Однако даже хорошо отрегулированные и откорректированные гамма-камеры создают неоднородные изображения с вариацией плотности счета не менее 10 %.

Показатель собственной интегральной неоднородности U рассчитывается по формуле [3]:

(3.21)

где nmax и nmin – соответственно максимальная и минимальная скорость счета по центральному и полезному полю изображения. Полезное поле – круговая площадь с максимальным диаметром, вписываемым в поле обзора коллиматора. Центральное поле – круговая площадь с диаметром, равном 75 % от диаметра полезной площади.

По такой же формуле определяется дифференциальная неоднородность, показывающая максимальное изменение скорости счета в области пяти пикселей во всех строках и столбцах [3].

Неоднородность в чувствительности детектора вызывается несколькими факторами: а) вариацией в откликах ФЭУ; б) нелинейностью в X, Y-позиционировании импульсов в пределах поля обзора; в) краевое "уплотнение" (англ. edge packing). Лидирующими, с точки зрения, влияния на неоднородность являются два первых фактора.

В ранних системах вариация в откликах ФЭУ уменьшалась последовательной подстройкой их коэффициентов усиления. в настоящее время для этого применяется компьютерное выравнивание с помощью матричных корректирующих факторов, рассчитываемых предварительно [8] и даже on-line [9].

Краевое "уплотнение" проявляется вокруг края изображения как яркий круг и ухудшает тем самым однородность изображения. Причина эффекта заключается в увеличении числа световых фотонов вблизи края детектора за счет процесса отражения от края детектора в направлении фотокатодов ФЭУ. Для борьбы с эти эффектом применяются установка дополнительного свинцового пояса по периферии коллиматора, а в новейших гамма-камерах – электронные средства подавления.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]