Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Part 1.docx
Скачиваний:
1554
Добавлен:
27.03.2016
Размер:
10.09 Mб
Скачать

4.2.5. Ограниченная массовая тормозная способность и поглощенная доза

При неупругом взаимодействии с веществом электрон, как отмечалось выше, может передать часть своей энергии электронам среды (вторичным электронам) или испустить тормозное излучение. В большинстве случаев вторичные электроны получают относительно небольшую долю энергии первичных электронов, но имеют место и случаи большой передачи энергии (до половины от энергии первичного электрона, а если передается больше половины, тогда вторичный электрон называют первичным, а вторичный – первичным). Такие высокоэнергетические вторичные электроны имеют уже достаточно большие пробеги в веществе и, следовательно, потеряют свою энергию на некотором удалении от точки образования. Аналогичная ситуация имеет место и для тормозных фотонов. Так как понятие поглощенной дозы D связывается с локальным поглощением энергии, то для расчета величины D(, исходя из знания пространственно-энергетического распределения флюенса электронов, использование понятия массовой тормозной способности будет некорректным. Для определения связи между этими двумя величинами вводится понятие ограниченной тормозной способности столкновений.

Ограниченная тормозная способность столкновений относится к концепции линейной потери энергии. Под понятием линейной передачи энергии L понимается отношение энергии dE, теряемой заряженной частицей на ионизацию и возбуждение атомов среды, к величине пути dl, т.е. L=(dE/dl). Таким образом, в величину L не входят потери энергии на испускание тормозного излучения. Чтобы отделить локальное поглощение энергии, имеющее место вблизи точки взаимодействия, от энергии, которая будет потеряна электроном на определенном расстоянии от точки взаимодействия, вводится понятие ограниченной тормозной способности столкновений, (L/ρ)col,Δ. Другими словами, величина (L/ρ)col,Δ представляет собой частное от деления dE на ρ∙dl, при условии, что в dE включаются все потери энергии, величина которых меньше Δ:

(1.56)

Выбор значения Δ зависит от специфики рассматриваемой проблемы. Для задач, связанных с расчетом ионизационных камер значение Δ берется равным 10 кэВ, что соответствует пробегу электрона в воздухе порядка 2 мм. Для микродозиметрических расчетов обычно берут Δ = 100 эВ. На рис. 1.15 приводятся для сравнения массовые тормозные способности с разными значениями Δ.

Количественные значения ограниченной тормозной способности для различных значений Δ и веществ были рассчитаны в работе [6]. Используя это понятие, значение поглощенной дозы, создаваемой электронами, можно определить из следующего выражения:

. (1.57)

Рис.1.15. Зависимости массовой тормозной способности от значения Δ

(адаптировано из [1])

4.2.6. Угловое распределение рассеянных электронов и массовая рассеивающая способность

При прохождении пучка электронов через вещество последние, как отмечалось выше, под действием кулоновских сил испытывают очень большое количество взаимодействий. В результате электроны приобретают составляющие скорости и смещения перпендикулярные к направлению их первоначального движения (см. рис. 1.13). Для большинства практических задач угловое и пространственное расширение узкого коллимированного пучка (тонкого луча) электронов в малоугловом приближении может быть аппроксимировано гауссовским распределением [7].

Пусть такой узкий пучок падает на плоскую поверхность рассеивателя вдоль оси z (геометрическая ось пучка параллельна оси z), которая, в свою очередь, нормальна к этой поверхности. Тогда угловое распределение флюенса электронов после прохождения ими слоя рассеивателя толщиной z , будет описываться выражением, предложенным в работах [7,8]:

, (1.58)

где θ – угол по отношению к оси z; – средний квадрат углового расширения пучка;.

Значение определяется из выражения:

, (1.59)

где (T/ρ) – массовая угловая рассеивающая способность, значения которой для некоторых веществ приводятся в работах [5, 9]; – начальное значение среднего квадрата углового расширения пучка.

По аналогии с массовой тормозной способностью МКРЕ [9] определяет массовую угловую рассеивающую способность как отношение приращения среднего квадрата угла рассеяния к :

. (1.60)

Эксперименты показывают, что для материалов с низким атомным номером наблюдается линейная зависимость между и глубиной проникновения пучка в достаточно широком интервале глубин [6,10]. С дальнейшим с увеличением глубины формируется равновесное угловое распределение, так как электроны, рассеянные на большие углы, быстро выбывают из пучка.Массовая угловая рассеивающая способность пропорциональна примерно квадрату атомного номера вещества и обратно пропорциональна кинетической энергии электрона.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]