Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В.В.Нешитой МЕТОДЫ СТАТИСТИЧЕСКОГО АНАЛИЗА.DOC
Скачиваний:
36
Добавлен:
16.11.2019
Размер:
4.6 Mб
Скачать

11.2.2. Метод обобщения

Рассмотрим уравнения экспоненты и прямой:

.

Найдем такую обобщенную формулу, которая будет включать множество частных случаев, в том числе уравнения прямой и экспоненты.

Обобщим две последние формулы путем введения нового параметра u. Используя замечательный предел

,

представим обобщенное уравнение в виде

(11.2.1)

При u = 1 из (11.2.1) имеем прямую, при u→0 – экспоненту.

Если из опыта величина y0 неизвестна, то формулу (11.2.1) целесообразно представить в другом виде

, (11.2.2) где .

Чтобы увеличить аппроксимирующие возможности формул (11.2.1) и (11.2.2), введем в них дополнительный параметр β

(11.2.3)

. (11.2.4)

Исследуем темп прироста кривой (11.2.3). Для этого вначале прологарифмируем ее:

.

Тогда

. (11.2.5)

В частном случае, при u→0

. (11.2.6)

Из последней формулы следует, что при β = 1 (u→0) мгновенный темп прироста (и, следовательно, темп роста) не зависит от времени t. При β>1 темп прироста со временем растет, при β<1 – убывает. Это значит, что параметр β является показателем ускорения или замедления темпа прироста (и темпа роста) кривой (11.2.3), которая при u→0 имеет вид

. (11.2.7)

Из (11.2.5) следует, что при β = 1, u < 0 темп прироста кривой (11.2.3) со временем растет, а при u > 0 – убывает.

По характеру темпа прироста эмпирического временного ряда может быть установлена выравнивающая кривая, обладающая нужными свойствами.

На основании формул (11.2.3) и (11.2.4) можно получить другие кривые роста. Например, при t = ex

, (11.2.8)

. (11.2.9)

При

(11.2.10)

. (11.2.11)

Приведенные четырехпараметрические кривые роста содержат множество частных случаев и могут использоваться в различных областях знания для выравнивания и прогнозирования различных статистических зависимостей, в том числе временных рядов.

11.2.3. Кривые роста на базе обобщенных распределений

Широкую систему кривых роста можно построить на базе функций распределения:

(11.2.12)

, (11.2.13)

где N – некоторый параметр. Свойства этих кривых полностью определяются свойствами функции распределения F(t) (см. табл. 6.3.2).

Формула (11.2.12) может описывать, например, количество разных статей по определенной теме, опубликованных в первых t журналах, при условии, что последние упорядочены по убыванию количества таких статей; количество заболеваний при эпидемиях за время t от начала эпидемии, а также множество других кривых, в том числе кривых роста числа отказов за время t в испытаниях на надежность.

Другая, еще более широкая система кривых роста может быть построена на основе обобщенных распределений, заданных плотностями p(t), p(x), p(y). Вводя другие обозначения переменных и освобождаясь от ограничений, накладываемых на параметры кривых распределения, можем записать следующие уравнения для описания различного рода кривых роста, в том числе временных рядов:

11.3. Оценивание параметров кривых роста

11.3.1. Уравнение прямой

Оценки параметров кривых роста вычисляются по методу наименьших квадратов. При этом уравнение кривой должно быть приведено к линейному виду

. (11.3.1)

Рассеяние отдельных значений случайной величины Х относительно прямой (11.3.1) должно описываться первой системой непрерывных распределений (SNR1), поскольку здесь последующие значения случайной величины Хt+1 образуются из предыдущих Хt путем прибавления постоянной величины В (см. свойства SNR1).

Если фактические уровни временного ряда Хt получены как средние значения в моменты времени t (условные средние), то их рассеяние относительно прямой (11.3.1) может быть описано нормальным законом, который является частным случаем SNR1

или с учетом (11.3.1)

. (11.3.2)

Плотность (11.3.2) представляет собой вариационно-динамическую модель и содержит три параметра: А, В, σ. Их оценки можно найти по методу наибольшего правдоподобия. Для этого вначале прологарифмируем выражение (11.3.2)

и запишем логарифмическую функцию правдоподобия, представляющую собой математическое ожидание логарифма плотности распределения

.

Далее из условий

найдем уравнения правдоподобия:

Из первого уравнения имеем

.

Величина представляет собой остаточную дисперсию, несмещенная оценка которой равна

. (11.3.3)

Из второго и третьего уравнений путем замены соответствующих математических ожиданий их оценками получим систему двух уравнений с двумя неизвестными А, В:

Решение этой системы дает

(11.3.4)

. (11.3.5)

Сделаем некоторые выводы.

Оценки параметров А, В, полученные по методу наибольшего правдоподобия, совпадают с оценками метода наименьших квадратов. Оценка дисперсии совпадает с ее оценкой по методу моментов.

В качестве критерия точности выравнивания временного ряда может быть принят минимум остаточной дисперсии

или минимум суммы квадратов отклонений эмпирических значений уровней ряда от теоретической прямой

.

В этом случае коэффициент корреляции должен быть максимальным.

Полученные результаты позволяют оценить нижнюю и верхнюю границы уровня временного ряда при заданной доверительной вероятности Р

, (11.3.6)

где величина Z зависит от доверительной вероятности Р и числа степеней свободы ν, которое связано с числом точек n. При малых n величина Z определяется по таблицам распределения Стьюдента.

При Р = 0,9 величину Z можно рассчитать по формуле

, (11.3.7)

которая получена автором путем выравнивания табличных данных по формуле (11.2.3).

Произведение ZS является показателем точности аппроксимации при заданной надежности (доверительной вероятности) Р.