Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В.В.Нешитой МЕТОДЫ СТАТИСТИЧЕСКОГО АНАЛИЗА.DOC
Скачиваний:
26
Добавлен:
16.11.2019
Размер:
4.6 Mб
Скачать

8.2.4. Выравнивающее распределение суммы независимых случайных величин

Пусть распределение некоторой случайной величины Х задано таблицей (графы 1 – 3).

Таблица 8.2.7

Распределение случайной величины Х

Хi

mi

pi

р(х)

0

1

2

3

4

5

6

0

2

6

9

6

2

0

0

0,08

0,24

0,36

0,24

0,08

0

0,000074

0,076705

0,252557

0,342127

0,252557

0,076705

0,000074

Найдем по методу моментов выравнивающее распределение.

По данным табл. 8.2.7 вычислим моменты случайной величины Х. Они равны: .

Поскольку распределение симметрично, показатель асимметрии β1=0.

Показатель островершинности

.

Предполагая, что данное распределение описывается первой системой непрерывных распределений, по методу моментов находим, что выравнивающим является распределение I типа (бeта-распределение) с параметрами

и нормирующим множителем N = 0,107546.

Распределение случайной величины Х задается плотностью

(-0,068538<x<6,068538).

В табл. 8.2.7. (графа 4) приведены расчетные значения плотности р(х) при найденных оценках параметров. Они очень близки к вероятностям.

Пусть далее требуется найти выравнивающее распределение суммы двух независимых случайных величин Х и Y, распределения которых заданы приведенной выше табл. 8.2.7.

Эту задачу можно решить либо теоретически по правилам отыскания композиции распределений по известным плотностям слагаемых, либо эмпирически, вычислив предварительно моменты случайной величины Z=X+Y.

По формулам (7.4.33) для случайной величины Z=X+Y (здесь n=2) найдем:

Далее по формулам (7.4.34) имеем:

.

По известным моментам распределения случайной величины Z=X+Y нетрудно рассчитать параметры и нормирующий множитель выравнивающей кривой, которая тоже относится к I типу (бeта-распределение). Они равны:

.

Случайная величина Z=X+Y задана на интервале

–0,49182<Z<12,49182.

Распределение случайной величины Z=X+Y можно задать таблично. Для этого по данным табл. 8.2.7 необходимо найти все возможные значения суммы X + Y и их вероятности, которые равны произведениям вероятностей слагаемых. В табл. 8.2.8 в первых трех графах приведено распределение случайной величины Z=X+Y при условии, что Х = Y, причем случайные величины Х и Y имеют одно и то же распределение, заданное табл. 8.2.7.

Таблица 8.2.8

Распределение суммы двух независимых одинаково распределенных случайных величин Z=X+Y

Z=X+Y

mz

pz

р(z)

1

2

3

4

5

6

7

8

9

10

11

4

24

72

132

161

132

72

24

4

0,0064

0,0384

0,1152

0,2112

0,2576

0,2112

0,1152

0,0384

0,0064

0,000209

0,005864

0,038271

0,116246

0,211528

0,255760

0,211528

0,116246

0,038271

0,005864

0,000209

Естественно, что моменты, вычисленные по распределению случайной величины Z, совпадают с моментами, рассчитанными ранее теоретически с помощью формул (7.4.33) по моментам случайной величины Х.

Кроме того, теоретические моменты выравнивающей кривой по четвертый порядок включительно совпадают с эмпирическими моментами, поскольку на этом равенстве основано вычисление выравнивающей кривой распределения.

Центральные моменты более высоких порядков статистического и выравнивающего распределений могут не совпадать.

Так, момент 6-го порядка случайной величины Z, рассчитанный по данным табл. 8.2.8, равен , в то время как теоретический момент 6-го порядка равен (см. формулу (7.3.9) при r = 5, γ = k, γu = 1)

,

т.е. в 1,012 раза больше эмпирического момента.

Расчетные значения плотности р(z) при найденных оценках параметров приведены в табл. 8.2.8. Они близки к соответствующим вероятностям.

Таким же путем может быть найдено распределение суммы независимых случайных величин, имеющих различные типы распределений, например, гамма и бeта-распределения.