Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Венгар В., Поу Р. Неужели я гений.doc
Скачиваний:
31
Добавлен:
02.05.2014
Размер:
1.42 Mб
Скачать

1.3. Что было у Эйнштейна и чего нет у нас?

Именно это хотел выяснить Томас Харвей. Доктор Харвей был дежурным патологоанатомом Принстонской больницы в тот день, когда в 1955 году скончался Эйнштейн. По чистой случайности судьба распорядилась так, что именно Харвею пришлось вскрывать тело Эйнштейна. Не заручившись разрешением семьи великого ученого, на свой страх и риск Харвей извлек и законсервировал его мозг и сорок лет слой за слоем изучал под микроскопом орган органов, хранящийся в растворе формальдегида. Какова же была его цель? Раскрыть секрет гения Эйнштейна.

«Никто до сих пор не выяснил, что отличает мозг гения от мозга обычного человека, — рассказывал позднее доктор Харвей журналистам. — ...Нами руководила идея попытаться найти хоть что-нибудь...»

Самому Харвею так ничего и не удалось обнаружить, но вот одной из его коллег повезло больше. Изучив фрагмент мозга Эйнштейна, Мариан Даймон, нейроанатом при Калифорнийском университете в Беркли, в начале 80-х годов сообщила о потрясающем открытии, ведущем к революции в представлениях о человеческих способностях и гениальности.

1.3.1. Как сделать гения.

Принято считать, что гением нужно родиться. А вот Мариан Даймон посвятила свою работу «выращиванию» гениев в лабораторных условиях.

В своем впоследствии знаменитом эксперименте она поместила несколько крыс в обстановку, стимулирующую развитие: их клетки были наполнены качелями, лесенками, «беличьими колесами» и разнообразными игрушками. А другим крысам достались совершенно пустые клетки. В стимулирующей среде крысы не только дожили до трех лет (что соответствует примерно девяноста годам человека), но у них увеличились и размеры мозга. Между нервными клетками вырос целый лес новых соединений в форме дендритов и аксонов — тонких разветвленных структур, передающих электрические сигналы от одной нервной клетки (нейрона) к другой. Крысы, обитавшие в обычных клетках, умирали раньше. Их мозг имел значительно меньше межклеточных соединений, чем у стимулировавшихся собратьев, и в какой-то момент развитие животных останавливалось вовсе.

Еще в 1911 году отец нейроанатомии Сантьяго Рамон-и-Кахаль обнаружил, что количество соединений между нейронами (синапсов) является мерой гениальности, причем этот показатель оказывается более существенным, нежели общее число нейронов. Эксперименты, проведенные Даймон, показали, что «физический механизм гениальности» можно создать путем умственных упражнений, по крайней мере, у крыс. Применим ли этот принцип к людям? Даймон пыталась найти ответ на этот вопрос. Она изучала фрагменты мозга Эйнштейна. Как и ожидалось, в левом полушарии ей удалось обнаружить повышенное число глиальных клеток. Даймон назвала этот нейрологический коммутатор «ассоциативной областью других ассоциативных областей мозга». Глиальные клетки служат «клеем», связывающим нервные клетки друг с другом; они способствуют передаче электрохимических сигналов между нейронами. Именно это и ожидала увидеть Даймон, уже наблюдавшая повышенную концентрацию глиальных клеток у подопытных крыс. Присутствие их большого количества и в мозгу Эйнштейна указывало на сходство процессов обогащения ими мозга.

Однако в отличие от нейронов, которые не воспроизводятся с момента рождения, количество глиальных клеток,аксонов и дендритов может увеличиваться на протяжении всей жизни, если правильно использовать мозг. Исследования Даймон позволяют предположить, что чем активнее мы учимся, тем больше возникает таких соединений. И напротив, стоит нам прекратить обучение и позволить мозгу погрузиться в застой, соединительные клетки начинают отмирать.

Вывод для преподавателей очевиден. Если мозг Эйнштейна в чем-то устроен подобно мозгу подопытных крыс, то это значит, что путем достаточно интенсивной тренировки ума можно вырастить новых эйнштейнов.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.