Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эксплуатация компрессорных станций магистральны...doc
Скачиваний:
53
Добавлен:
11.11.2019
Размер:
3.52 Mб
Скачать

Наработка на отказ у ряда гпа с газотурбинным приводом

#G0

Тип ГПА

Количество ГПА, шт.

Наработка на отказ, ч

ГТ-750-6

100

4500

ГТ-6-750

140

9800

ГТН-6

80

11500

ГТК-10

790

7900

ГПУ-10

270

6200

Опыт эксплуатации агрегатов на газопроводах показывает, что в настоящее время к агрегатам нового поколения, поступающим на газопроводы, могут быть предъявлены следующие требования (не менее): коэффициент технического использования на уровне 0,93-0,95; коэффициент готовности на уровне 0,98-0,985; коэффициент наработки на отказ на уровне 3,5-4,5 тыс.ч; ресурс между средними ремонтами 10-13 тыс.ч; ресурс между капитальными ремонтами 20-25 тыс.ч; полный ресурс до списания ГПА 100 тыс.ч.

5.2. Техническая диагностика газоперекачивающих агрегатов

Диагностика происходит от греческого слова diagnostikos - способность распознавать. В соответствии с ГОСТ 20911-75 техническая диагностика призвана разрабатывать методы и приборы для определения технического состояния объектов диагностирования (агрегатов) по параметрам, характеризующим протекание процессов в этом агрегате.

В зависимости от постановки задачи можно различать следующие виды диагностики: функциональную, связанную с определением изменения основных энергетических показателей агрегата (например, его мощности и КПД); структурную, оценивающую характер и степень повреждений деталей механизма; визуальную, оценивающую причины разрушения деталей при их осмотре, и прогнозную, предсказывающую характер протекания износа деталей и время выхода их из строя.

В настоящее время в эксплуатационных условиях в той или иной мере применяют следующие виды диагностики: параметрическую, вибрационную, по анализу отработанного масла, оптические и акустические методы для обследования узлов и деталей ГТУ и др.

В условиях оценки состояния и работы ГТУ на газопроводах важное значение имеют практически все виды диагностики, прежде всего потому, что агрегаты на КС непрерывно работают в течение многих сотен и тысяч часов без остановки. Именно в этих условиях, не имея возможности в ряде случаев по технологическим причинам остановить агрегат, особенно важно оценить его текущее состояние и предсказать ход изменения его основных характеристик (мощность, КПД) на перспективу.

В условиях КС в настоящее время заложена постоянно действующая система замера параметров работающих агрегатов по ГТУ и нагнетателю. На станциях периодически измеряют параметры рабочего тела Р, Т по тракту ГТУ, параметры газа Р, Т по тракту нагнетателя, параметры окружающей среды. Однако на КС еще не организована до конца надежная система комплексной оценки состояния агрегатов, например, по мощности или по расходу топливного газа и т.п., прежде всего из-за сложности достоверного определения расхода рабочего тела по ГТУ или транспортируемого газа по нагнетателю.

Следует отметить, что состояние агрегатов можно и целесообразно оценивать не только значениями измеряемых параметров, такими как Р и Т, но и такими характеристиками, как шум, вибрация, утечки рабочего тела по тракту агрегата и т.д.

Шум работающего агрегата представляет собой хороший источник диагностической информации, характеризующий сложный спектр шумов аэродинамического и механического происхождения, изменяющийся в зависимости от изменения состояния двигателя. Как известно, основными источниками шума в работающем двигателе являются компрессор, процесс горения топлива в камере сгорания, газовая турбина, вращающиеся детали вспомогательных механизмов ГТУ, обслуживающих агрегат. Если в этих условиях определять составляющие спектра шума от агрегата и отслеживать его изменения во времени, то диагностирование ГПА по спектру шума может быть весьма эффективным в условиях эксплуатации для оценки состояния агрегата.

При работе газотурбинного агрегата все его узлы и детали совершают вынужденные и резонансные колебания механического и аэродинамического происхождения, что вызывает так называемую вибрацию двигателя. К источникам колебаний механического происхождения можно отнести разного рода соударения и взаимодействие различных деталей двигателя. Кисточникам колебаний аэродинамического происхождения можно отнести пульсацию потока газов по газовоздушному тракту ГТУ, турбулентность процесса горения топлива в камере сгорания и т.п.

В зависимости от конструктивного исполнения ГТУ, ее сборки и монтажа, условий эксплуатации, вибрация элементов установки может быть самой различной. В некоторых случаях вибрация может стать такой значительной, что заставит пойти на вынужденную остановку агрегата. В противном случае повышенная вибрация может привести к быстрому износу и разрушению узлов двигателя, прежде всего тех, которые в наибольшей степени подвержены вибрации (лопатки, подшипники, узлы крепления корпуса двигателя и т.п.)

Все это вместе взятое приводит к необходимости измерять на КС вибрацию каждой ГТУ, чтобы на базе большого числа замеров установить спектры характерных неисправностей двигателей и разработать критерии эффективной эксплуатации ГТУ на КС.

Кроме указанных методов, в условиях эксплуатации проводится диагностика температурного состояния деталей агрегата, прежде всего лопаток турбины, визуально-оптическая диагностика, позволяющая выявлять разрывы материала, трещины, неплотности, деформации, нарушение покрытий и изоляции камер сгорания, газовой турбины и т.п.

С помощью того или иного метода диагностики ГПА можно и весьма целесообразно прогнозировать изменение технического состояния агрегата с целью предупреждения вынужденных остановок ГПА, повышения эффективности их эксплуатации, определения видов и сроков проведения ремонтов.

Техническое состояние газоперекачивающего агрегата существенным образом сказывается на всей технологии транспорта газов по газопроводу. Можно всегда утверждать, что, если при данном расходе топливного газа по агрегату снизилась производительность нагнетателя, то при прочих равных условиях это могло произойти из-за ухудшения состояния ГТУ, нагнетателя или того и другого вместе.

Одним из основных направлений технической диагностики ГПА является метод параметрической диагностики, как наиболее перспективный и имеющий значительный опыт использования в авиационной и других отраслях промышленности. Основой метода параметрической диагностики является определение изменения параметров технического состояния агрегата или его отдельных элементов по изменению его технологических и топливоэнергетических показателей - мощности, производительности, КПД привода и нагнетателя в процессе эксплуатации.

Об изменении технического состояния агрегата или его отдельных элементов судят по изменению характеристик их рабочих режимов. Само изменение обычно оценивается сравнением характеристик, построенных для данного момента, и времени, принятого за исходное. В качестве исходного может быть принято время проведения стендовых, сдаточных или других видов испытаний агрегата. Неизменность характеристик агрегата будет говорить о его нормальном состоянии; "расслоение" характеристик будет свидетельствовать об изменениях, происходящих в ГПА.

В качестве количественных оценок смещения характеристик ГПА, ГТУ или нагнетателя иногда принимаются коэффициенты технического состояния по КПД или по мощности :

; , (5.6)

где - соответственно, КПД и мощность агрегата (нагнетателя) в данный момент времени; и - соответственно, КПД и мощность в исходном состоянии агрегата (нагнетателя) в начале их эксплуатации на КС или после проведения очередного ремонта. В условиях эксплуатации могут использоваться и другие показатели, определяющие изменения состояния ГПА и его элементов, в основе которых лежит принцип определения "расслоения" характеристик.

Технические сложности в непосредственном измерении мощности и, следовательно, КПД энергопривода и нагнетателя приводят к необходимости их определения косвенным путем, используя доступные и измеряемые параметры, такие как: давление, температура, расход рабочего тела, связанные между собой известными соотношениями термодинамики. На рис. 5.1 показана примерная схема измерений при проведении теплотехнических испытаний ГПА с двухвальным газотурбинным приводом и регенератором.

Рис. 5.1. Схема измерений при теплотехнических испытаниях ГПА

Опыт использования метода параметрической диагностики для оценки технического состояния эксплуатируемых ГПА показал, что для ее эффективного применения необходимо решить две принципиальные задачи:

- обеспечить необходимый объем и требуемую точность измерений параметров ГПА;

- разработать методическое и программное обеспечение для автоматизированных расчетов по определению технического состояния ГПА с использованием ПЭВМ.

Большинство эксплуатируемых ГПА имеют объем штатных измеряемых параметров, используемых для контроля и управления агрегата, достаточный для проведения его диагностических исследований. Однако общая точность применяемой штатной измерительной аппаратуры не удовлетворяет современным требованиям оценки технического состояния ГПА. На практике необходимо использовать лабораторные образцовые приборы. Характеристики некоторых из них представлены в табл. 5.2.

Следует заметить, что препарирование агрегата с использованием указанных измерительных приборов влечет за собой большой объем подготовительных работ, соизмеримый с объемом проведения непосредственно экспериментальных исследований.

Что касается методического и программного обеспечения, то в настоящее время эта задача практически решена для всех типов ГПА, находящихся в эксплуатации. Использование метода параметрической диагностики для оценки технического состояния ГПА позволяет решить следующие задачи:

- оценить качество ремонта ГПА путем определения показателей его технического состояния до и непосредственно после вывода агрегата из ремонта;

- обосновать сроки проведения очередного ремонта ГПА;

- оперативно определить узел ГПА (ГТУ или ЦБН), явившийся причиной ухудшения технологических и топливо-энергетических показателей агрегата;

- определить фактические теплотехнические и газодинамические характеристики модернизированных ГПА (замена СПЧ нагнетателя, элементов проточной части ГТУ, установка - замена регенератора, совершенствование камеры сгорания и т.д.).

Таблица 5.2