Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элетромеханика 1 типографский вариант.doc
Скачиваний:
168
Добавлен:
09.11.2019
Размер:
20.3 Mб
Скачать

6.8. Векторная диаграмма асинхронного двигателя

Для построения векторной диаграммы необходимо определить ток ротора. ЭДС ротора была определена ранее. Полное сопротивление обмотки ротора составляется из активного сопротивления обмотки и индуктивного сопротивления . Сопротивление ротора, таким образом

,

где , , .

Из ранее полученных соотношений . Следовательно,

.

При неподвижном роторе скольжение равно единице ( ), и ток неподвижного ротора будет равен

.

Для подаваемого на статор напряжения ЭДС ротора определяется падением напряжения

; .

Учитывая введенное понятие тока ротора, приведенного к статорной обмотке:

,

где .

Рис. 6.25

По приведенным формулам можно достаточно просто построить векторную диаграмму асинхронного двигателя с неподвижным ротором (рис. 6.25.)

Векторная диаграмма напряжений ротора построена в соответствии с уравнением

.

Реактивное сопротивление ротора, обусловленное индуктивностью рассеяния, является величиной положительной, поэтому ток заторможенного ротора отстает от ЭДС на угол . Ток статорной обмотки может быть представлен векторной суммой тока холостого хода и тока ротора, приведенного к обмотке статора , взятого со знаком минус. Коэффициентом приведения тока обмотки ротора к обмотке статора является отношение , где и есть количество витков обмотки статора и ротора, а коэффициен-ты и , всегда меньшие единицы, зависят от способа намотки обмоток статора и ротора соответственно.

Векторная диаграмма напряжений статорной обмотки построена по уравнению

.

Вектор падения напряжения на сопротивлении обмотки статора совпадает с током по фазе, а вектор падения напряжения на реактивном сопротивлении рассеяния опережает вектор тока на 90 .

Приведенная диаграмма построена для одной из фазных обмоток.

Из диаграммы следует, что асинхронный двигатель с короткозамкнутым ротором может рассматриваться как трансформатор с короткозамкнутыми выходными обмотками.

Построение векторной диаграммы работающего двигателя затруднено, так как частота тока статора отлична от частоты тока ротора. В этом случае возможно построение отдельно векторной диаграммы напряжений статора (рис. 6.26) и векторной диаграммы ротора (рис. 6.27).

Рис. 6.26 Рис. 6.27

В качестве базового можно использовать вектор магнитного потока, так как относительно статора он вращается со скоростью, определенной частотой тока статора, а относительно ротора частота его вращения совпадает с частотой тока ротора. Относительно обмотки статора магнитный поток изменяется синусоидально во времени с частотой , а относительно ротора с частотой .

Приведенные векторные диаграммы статорной и роторной цепи построены в соответствии с формулами

, ,

, .

Ток ротора выражается через параметры вторичной обмотки следующим образом:

.

Уравнение показывает, что величину тока ротора можно выразить через электродвижущую силу неподвижного ротора, имеющую частоту , но в этом случае реальное активное сопротивление ротора необходимо заменить сопротивлением . Эту величину можно рассматривать как сумму реального сопротивления обмотки ротора и некоторого дополнительного сопротивле- ния , величина которого зависит от и скольжения

.

Рис. 6.28

В этом случае соотношения в роторной цепи будут идентичны соотношениям во вторичной обмотке трансформатора, в которой наводится электродвижущая сила и в которую включен резистор сопротивлением

.

Таким образом, учитывая полученные соотношения, мы можем построить общую векторную диаграмму обеих цепей машины лишь для воображаемого неподвижного ротора, нагруженного на сопротивление (рис. 6.28) в соответствии с уравнениями

;

и .