Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Элетромеханика 1 типографский вариант.doc
Скачиваний:
168
Добавлен:
09.11.2019
Размер:
20.3 Mб
Скачать

3.2. Основные уравнения двигателя постоянного тока

Основными формулами, описывающими процесс преобразования энергии в двигателях постоянного тока, являются:

 уравнение механического момента на валу

;

 уравнение противоЭДС машины

и уравнение электрического равновесия двигателя постоянного тока, выражающее связь между приложенным напряжением, противоЭДС, током якоря и сопротивлением якорной цепи машины.

.

3.3. Потери и коэффициент полезного действия двигателей постоянного тока

Эффективность работы двигателя постоянного тока, как и других устройств, определяется коэффициентом полезного действия, величина которого зависит от потерь электрической энергии в элементах двигателя.

Рис. 3.3

На рис. 3.3 изображена электрическая схема двигателя с параллельным возбуждением.

Реостат , включенный последовательно с обмоткой возбуждения, необходим для регулирования силы тока возбуждения. При работе двигателя в номинальном режиме сопротивление цепи возбуждения определяется сопротивлением проводов обмотки возбуждения и сопротивлением реостата.

В общем случае ток, протекающий в этой цепи, нагревает обмотку и провод регулировочного реостата. Таким образом, мы имеем дело с рассеиванием электрической энергии в этой цепи. Если сопротивление обмотки возбуждения обозначить Rов, а сопро­тивление регулировочного реостата , то полное сопротивление цепи возбуждения Rв определится из уравнения , а потери энергии в этой цепи можно вычислить по формуле вычисления мощности или .

Другая часть энергии теряется в якоре. Не вся электрическая энергия, потребляемая якорем, преобразуется в механическую энергию прежде всего потому, что обмотка якоря обладает электрическим сопротивлением. Сопротивление проводников обмотки якоря в реальных машинах достаточно мало, но и это малое сопротивление играет существенную роль в эффективности работы двигателя.

Электрическая энергия подводится к якорю с помощью ще­точно-коллекторного устройства. Сопротивление коллекторных пластин, выполненных из меди, чрезвычайно мало, но сопро­тив­ление щеток и сопротивление контакта щетки  коллекторные пластины значительно. Прохождение тока по этим элементам приводит к дополнительным потерям электрической энергии. Общее со­противление цепи якоря Rя, таким образом, равно сумме сопротивлений щеток Rщ, перехода щетки  коллекторные пластины Rк и проводов обмотки Rо. Следовательно, .

Потери в этих сопротивлениях называют потерями в цепи якоря.

Барабан якоря изготавливают из листовой электротехнической стали, которая является проводящим материалом. При работе двигателя якорь вращается в неподвижном магнитном поле, и это приводит к тому, что сталь якоря постоянно перемагничивается с частотой кратной частоте вращения якоря. По причине изменения индукции магнитного поля и направления намагничивания стали, в якоре возникают вихревые токи. Оба явления связаны с потерями энергии, т. е. с превращением электрической энергии в тепловую энергию, которая приводит к нагреву двигателя. Потери на перемагничивание и на вихревые токи называют потерями в стали. Индукция магнитного поля в статоре и главных полюсах не изменяется во времени, поэтому потери в магнитопроводах этих частей машины практически отсутствуют.

Механическая часть конструкции машины вносит свою долю в потери энергии. В основном говорят о потерях в подшипниках, потерях, связанных с трением щеток о коллектор, и потерях в вентиляторе. Все эти потери связаны с преобразованием механической энергии в тепловую энергию. Мощность потерь, равная сумме мощностей потерь в подшипниках, трения щеток о коллектор, вентилятора называют механическими потерями Рмех.

Таким образом, потребляемая двигателем из сети электрическая энергия преобразуется:

  • в механическую выходную энергию,

  • в тепловую энергию цепи обмотки возбуждения,

  • в тепловую энергию электрической цепи якоря,

  • в тепловую энергию потерь в стали,

  • в тепловую энергию механических потерь.

Энергетическое равновесие в двигателе постоянного тока описывается следующим уравнением:

,

где Р1 – мощность, потребляемая двигателем из сети;

Р2 – мощность полезная на выходе двигателя;

Ря – мощность электрических потерь в цепи якоря;

Рс – мощность потерь в магнитопроводе или в стали машины;

Рмех – мощность механических потерь;

Рв – мощность потерь в цепи обмотки возбуждения.

Коэффициент полезного действия двигателя определяется традиционной формулой

.

Суммарная мощность потерь двигателей определяется экспериментально путем прямых измерений потребляемой мощности Р1 и выходной мощности Р2. Для этого двигатель подключается к сети постоянного тока с номинальным напряжением. Затем он нагружается тормозным моментом при номинальной частоте вращения. Входная мощность двигателя определится произведением тока двигателя на напряжение сети , а выходная мощность определяется произведением механического момента на валу на угловую частоту вращения, выраженную в радианах в секунду .

В том случае, когда испытателя интересуют величина мощностей отдельных видов потерь, проводятся следующие измерения:

  1. измеряется сопротивление обмотки возбуждения при номинальном токе обмотки;

  2. измеряется сопротивление якорной цепи при номинальном токе якоря;

  3. измеряется механическая мощность на валу отключенной от сети машины, якорь которой приводится во вращение другим посторонним двигателем;

  4. измерение мощности потерь магнитопровода (при известных значениях других видов потерь) производится путем измерения мощности, потребляемой двигателем в режиме холостого хода Р10 . Мощность потерь в стали в этом случае определится из формулы .