Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций часть 2 бакалавры.doc
Скачиваний:
132
Добавлен:
17.08.2019
Размер:
6.51 Mб
Скачать

Инверсная населенность уровней

Для того, чтобы поучить усиление падающего света, необходимо каким-либо образом обратить населенность уровней. Т.е. сделать так, чтобы большему значению энергии соответствовало и большее число атомов . При этом говорят, что совокупность атомов имеет инверсную (обратную) населенность уровней.

Отношение числа атомов на уровнях и равно:

В случае инверсной населенности . Отсюда следует, что показатель экспоненты должен быть больше нуля ‑ . Но . Следовательно, чтобы показатель экспоненты был больше нуля, необходимо чтобы температура была отрицательной ‑ .

Поэтому состояние с инверсной населенностью уровней называют иногда состоянием с отрицательной температурой. Но это выражение носит условный характер, потому что само понятие температуры применимо к равновесным состояниям, а состояние с инверсной населенностью является неравновесным состоянием.

Далее закон ослабления света при прохождении через обычное вещество определяется законом Бугера:

В случае инверсной населенности, свет, проходя через вещество, будет усиливаться. Формально это соответствует тому, что в законе Бугера коэффициент поглощения будет отрицательным. Т.е. совокупность атомов с инверсной населенностью уровней можно рассматривать как среду, с отрицательным коэффициентом поглощения.

И так, для усиления света веществом нам необходимо создать инверсную населенность уровней этого вещества. Посмотрим, как это делается на примере рубинового лазера.

Рубин представляет собой окись алюминия , в которой некоторые атомы алюминия заменены атомами хрома . Этот рубин облучают широким спектром частот электромагнитных волн. При этом ионы хрома переходят в возбужденное состояние (см. рис. 4). Ионы алюминия в этом деле заметной роли не играют.

Состояние с энергией представляет собой целую полосу, вследствие взаимодействия ионов с кристаллической решеткой. С уровня для ионов хрома возможны два пути.

1. Возвращение в исходное состояние с энергией с испусканием фотона.

2. Переход в метастабильное состояние с энергией путем теплового взаимодействия с ионами кристаллической решетки алюминия.

Время жизни на уровне как и обычно, равно времени жизни в возбужденном состоянии ‑ . Спонтанный переход на уровень обозначен стрелкой , а переход на метастабильный уровень обозначен стрелкой .

Расчеты и эксперимент показывают, что вероятность перехода много больше вероятности перехода . Кроме того, переход из метастабильного состояния с энергией в основное состояние запрещен правилами отбора (правила отбора не абсолютно строги, они указывают лишь большую или меньшую вероятность перехода).

Поэтому время жизни на метастабильном уровне составляет , что в сто тысяч раз превышает время жизни на уровне .

Таким образом, при достаточно большом числе атомов хрома может возникнуть инверсная населенность уровня ‑ число атомов на уровне превысит число атомов на уровне , т.е. может получиться то, что мы желаем.

Спонтанный переход с уровня на основной уровень обозначен стрелкой , Возникающий при этом переходе фотон может вызвать вынужденное излучение следующего фотона, который обозначен стрелкой . Этот еще одного и т.д. Т.е. образуется каскад фотонов.

Рассмотрим теперь техническое устройство рубинового лазера.

Он представляет собой стержень, диаметром порядка и длиной . Торцы стержня строго параллельны друг другу и тщательно отшлифованы. Один торец представляет собой идеальное зеркало, второй ‑ полупрозрачное зеркало, пропускающее около падающей энергии.

Вокруг рубинового стержня устанавливают несколько витков лампы накачки ‑ ксеноновой лампы, работающей в импульсном режиме.

Итак, в теле стержня образовались вынужденные фотоны. Те фотоны, направление распространения которых составляет малые углы с осью стержня, будут многократно проходить стержень и вызывать вынужденное излучение метастабильных атомов хрома. Вторичные фотоны будут иметь то же направление, что и первичные, т.е. вдоль оси стержня. Фотоны другого направления не разовьют значительный каскад и выйдут из игры. При достаточной интенсивности пучка часть его выходит наружу.

Рубиновые лазеры работают в импульсном режиме с частотой повторения несколько импульсов в минуту. Кроме того, внутри них происходит выделение большого количества тепла, поэтому их приходится интенсивно охлаждать.

Рассмотрим теперь работу газового лазера, в частности гелий-неонового.

О н состоит из кварцевой трубки, внутри которой находится смесь газов гелия и неона. Гелий находится под давлением , а неон под давлением , при этом атомов гелия приблизительно в 10 раз больше, чем атомов неона. Основными излучающими атомами здесь являются атомы неона, а атомы гелия играют вспомогательную роль для создания инверсной населенности атомов неона.

Подкачка энергии в этом лазере осуществляется за счет энергии тлеющего разряда. При этом атомы гелия возбуждаются и переходят в возбужденное состояние ( см. рис. 5) . Это состояние для атомов гелия является метастабильным, т.е. обратный оптический переход запрещен правилами отбора. Поэтому атомы гелия могут перейти в невозбужденное состояние, передавая энергию атомам неона при столкновениях. Вследствие этого атомы неона приходят в возбужденное состояние , которое близко состоянию для гелия. Атомы неона возбуждаются как за сет энергии тлеющего разряда, так и за счет столкновений с атомами гелия.

Кроме того разгружают уровень , подбирая такие размеры трубки, чтобы атомы неона, находясь на уровне , при соударениях со стенками передавали бы им энергию, переходя на основной уровень.

Вследствие этих процессов происходит инверсная населенность уровня для неона. С уровня возможен переход на уровень .

Основным конструктивным элементом этого лазера является кварцевая газоразрядная трубка, диаметром около . В ней расположены электроды для создания электрического разряда. По торцам трубки расположены плоско-параллельные зеркала, одно из которых, переднее, полупрозрачное. Условия для усиления возникают только у тех фотонов, которые вылетают параллельно оси лазера.

Рабочей частотой лазера является переход . Правилами отбора разрешено около тридцати переходов. Для выделения одной частоты зеркала делают многослойными, настроенными на отражение только одной определенной волны. Широко распространены лазеры, излучающие волны с длиной . Но наиболее интенсивным является переход с длиной волны , т.е. в инфракрасной области спектра.

Газовые лазеры работают в непрерывном режиме и не нуждаются в интенсивном охлаждении.

Отличительными особенностями лазерного излучения являются.

1. Временная и пространственная когерентность.

2. Строгая монохроматичность .

3. Большая мощность

4. Узость лазерного пучка.