
- •Часть II
- •Эдс индукции
- •Взаимная индукция
- •Трансформатор
- •Явление самоиндукции
- •Лекция 2. (2 часа) Уравнения Максвелла
- •Теорема Гаусса для электрического поля
- •Теорема Гаусса для магнитного поля
- •Циркуляция вектора электрического поля
- •Циркуляция вектора магнитного поля
- •Ток смещения
- •Пружинный маятник (рис. 3)
- •Физический маятник (рис. 4)
- •Математический маятник (рис. 5)
- •Гармонический осциллятор при наличии сил сопротивления
- •Лекция 4.( 2часа) Вынужденные механические колебания. Упругие волны
- •Упругие волны
- •Уравнение бегущей волны
- •Принцип суперпозиции. Интерференция волн
- •1) Если колебания происходят в одинаковой фазе, т.Е. ( , (5)
- •Стоячие волны
- •Эффект Доплера
- •Затухающие электрические колебания
- •Лекция 6. (2 часа) Вынужденные электромагнитные колебания. Электромагнитные волны
- •Вынужденные электрические колебания
- •Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Электромагнитные волны.
- •Характеристики электромагнитной волны
- •Энергия, поток энергии электромагнитной волны
- •Лекция 7. (2 часа) Интерференция света
- •Когерентность и монохроматичность световых волн
- •Некоторые методы наблюдения интерференции света
- •Применение интерференции света
- •Лекция 8. ( 2 часа) Дифракция света
- •Принцип Гюйгенса — Френеля
- •Метод зон Френеля
- •Дифракция Френеля на круглом отверстии
- •Дифракция Френеля на диске
- •Дифракция Фраунгофера на одной щели
- •Дифракция Фраунгофера на дифракционной решетке
- •Дифракция на пространственной решетке
- •Лекция 9. (2 часа)
- •Дисперсия и поглощение света в веществе.
- •Поглощение света
- •Естественный и поляризованный свет
- •Поляризация света при отражении и преломлении на границе двух диэлектриков
- •Двойное лучепреломление. Призма Николя
- •Искусственная оптическая анизотропия
- •Вращение плоскости поляризации
- •Лекция 10. (2 часа) Тепловое излучение
- •Понятие о равновесном тепловом излучении
- •Характеристики теплового излучения
- •Закон Кирхгофа
- •Законы излучения абсолютно черного тела
- •Квантовый характер излучения
- •Лекция 11. (2 часа) Фотоэлектрический эффект
- •Внешний фотоэффект
- •Внутренний фотоэффект
- •Вентильный фотоэффект
- •Корпускулярно-волновой дуализм
- •Лекция 12. (2 часа) Теория атома водорода по Бору
- •Закономерности линейчатых спектров водорода
- •Модель атома Томсона
- •Опыты Резерфорда
- •Планетарная модель атома Резерфорда
- •Постулаты Бора
- •Опыты Франка и Герца
- •Лекция 13. (2 часа) Элементы квантовой механики
- •Гипотеза Луи-де-Бройля
- •Корпускулярно-волновые свойства частиц
- •Соотношение неопределенностей
- •Электрон в электронно-лучевой трубке и в атоме
- •Длина волны де-Бройля покоящихся тел
- •Физический смысл волновой функции
- •Волновая функция заряженной частицы
- •Операторы импульса и энергии
- •Уравнение Шредингера
- •Лекция 14. (2 часа) Оптические квантовые генераторы
- •Спонтанные и вынужденные переходы, их вероятность
- •Инверсная населенность уровней
- •Лекция 15. (2 часа) Элементы зонной теории твердых тел
- •Лекция 16. (2 часа) Радиоактивность
- •Радиоактивность
- •Методы регистрации радиоактивного излучения
- •Правила радиоактивного смещения
- •Изотопы, изобары, изотоны, изомеры
- •Закон радиоактивного распада, активность
- •Атомное ядро
- •Ядерные силы
- •Современные представления о природе электромагнитных и ядерных сил
- •Туннельный эффект
- •Понятие об устойчивости ядра
- •Ядерные реакции и элементарные частицы
- •Ядерные реакции
- •Реакции с медленными частицами
- •Реакции с быстрыми нейтронами
- •Деление тяжелых ядер
- •Ядерное оружие и ядерная энергетика
- •Термоядерные реакции
- •Водородная бомба
- •Управляемые термоядерные реакции
- •Элементарные частицы Виды взаимодействий элементарных частиц
- •Систематика элементарных частиц
- •Частицы и античастицы
- •Законы сохранения
Корпускулярно-волновые свойства частиц
Если
электрон движется со скоростью
,
то его импульс равен
.
Следовательно, движущемуся электрону
соответствует длина волны
,
равная:
При
прохождении электроном разности
потенциалов
электрон приобретает скорость
,
равную:
В этом случае, длина волны, соответствующая электрону, будет равна:
(2)
Подставляя численные значения констант, получим:
Напряжении
в электронно-лучевой трубке меняется
в пределах от
до
. Следовательно, длина волны электрона
лежит в пределах от
до
,
т.е. в диапазоне рентгеновского излучения.
Следовательно, появляется реальная
возможность проверки гипотезы
Луи-де-Бройля, проверив, дифрагируют
ли электронные пучки на кристаллах.
В 1927 г. Девисон и Джермер исследовали явление рассеяния электронов на кристалле никеля. Никель был ранее изучен с помощью рентгеновских лучей, и поэтому постоянная его решетки была хорошо известна.
Если электрон обладает волновыми свойствами, то при рассеянии на кристалле должны быть направления максимумов и направления минимумов. И это действительно подтвердилось в эксперименте. Причем экспериментально измеренная длина волны электрона в точности соответствовала теоретической.
Советский ученый Тартаковский исследовал явление прохождения электронного пучка через тонкие металлические фольги. При этом получалась дифракционная картина в точности такая же, как и при прохождении рентгеновских лучей.
Этими, и подобными им экспериментами было доказано, что электрон действительно обладает волновыми свойствами.
Причем было показано, что волновые свойства присущи каждому электрону в отдельности, а не большой совокупности электронов в целом.
Таким образом, накапливались данные о корпускулярно-волновом дуализме электрона.
Эксперименты, указывающие на волновую природу электрона.
1. Дифракция электронов, следовательно ‑ электрон не шарик, а сложное образование, структура, обладающая волновыми свойствами.
2. В зависимости от внешних условий структура электрона меняется, т.е. структура электрона зависит от его взаимодействия с окружающей средой.
3. Область локализации электрона в атоме ‑ электронная оболочка. В то же время при прохождении через кристалл, электрон взаимодействует одновременно со множеством атомов, о чем свидетельствует острота дифракционных максимумов. Т.е. здесь область локализации электрона совершенно другая.
Корпускулярная природа электрона.
Электрон действует всегда как единое целое, не дробясь на части. Однако его неделимость не обусловлена его точечностью, а имеет гораздо более сложную природу, разгадка которой дело будущего.
Волновые свойства электронов позволяют их использовать в так называемом электронно-структурном анализе, который дает лучшие результаты, в отличие от рентгеноструктурного анализа.
Это происходит потому, что рентгеновские фотоны взаимодействуют только с электронной оболочкой атома, а электроны взаимодействуют в основном с ядром атома.
Как видно из формулы (3.11), длина волны частицы, при прочих равных условиях, обратно пропорциональна корню квадратному из массы частицы.
Таким
образом, если для электрона энергии
длина волны получается равной
,
то для протона, той же энергии, длина
волны будет равна:
Отсюда получаем, что длина волны протона энергией равна
А
для молекулы кислорода ‑
.
Причем здесь мы предположили, что гипотеза Луи-де-Бройля распространяется и на сложные, составные частицы. Это предположение было подтверждено экспериментально, путем получения дифракционной картины от атомов гелия.
Если
мы возьмем пылинку, массой
,
движущейся со скоростью
,
то для де-Бройлевской длины волны получим
значение:
Т.е. ничтожно малая длина волны.