- •Часть II
- •Эдс индукции
- •Взаимная индукция
- •Трансформатор
- •Явление самоиндукции
- •Лекция 2. (2 часа) Уравнения Максвелла
- •Теорема Гаусса для электрического поля
- •Теорема Гаусса для магнитного поля
- •Циркуляция вектора электрического поля
- •Циркуляция вектора магнитного поля
- •Ток смещения
- •Пружинный маятник (рис. 3)
- •Физический маятник (рис. 4)
- •Математический маятник (рис. 5)
- •Гармонический осциллятор при наличии сил сопротивления
- •Лекция 4.( 2часа) Вынужденные механические колебания. Упругие волны
- •Упругие волны
- •Уравнение бегущей волны
- •Принцип суперпозиции. Интерференция волн
- •1) Если колебания происходят в одинаковой фазе, т.Е. ( , (5)
- •Стоячие волны
- •Эффект Доплера
- •Затухающие электрические колебания
- •Лекция 6. (2 часа) Вынужденные электромагнитные колебания. Электромагнитные волны
- •Вынужденные электрические колебания
- •Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.
- •Электромагнитные волны.
- •Характеристики электромагнитной волны
- •Энергия, поток энергии электромагнитной волны
- •Лекция 7. (2 часа) Интерференция света
- •Когерентность и монохроматичность световых волн
- •Некоторые методы наблюдения интерференции света
- •Применение интерференции света
- •Лекция 8. ( 2 часа) Дифракция света
- •Принцип Гюйгенса — Френеля
- •Метод зон Френеля
- •Дифракция Френеля на круглом отверстии
- •Дифракция Френеля на диске
- •Дифракция Фраунгофера на одной щели
- •Дифракция Фраунгофера на дифракционной решетке
- •Дифракция на пространственной решетке
- •Лекция 9. (2 часа)
- •Дисперсия и поглощение света в веществе.
- •Поглощение света
- •Естественный и поляризованный свет
- •Поляризация света при отражении и преломлении на границе двух диэлектриков
- •Двойное лучепреломление. Призма Николя
- •Искусственная оптическая анизотропия
- •Вращение плоскости поляризации
- •Лекция 10. (2 часа) Тепловое излучение
- •Понятие о равновесном тепловом излучении
- •Характеристики теплового излучения
- •Закон Кирхгофа
- •Законы излучения абсолютно черного тела
- •Квантовый характер излучения
- •Лекция 11. (2 часа) Фотоэлектрический эффект
- •Внешний фотоэффект
- •Внутренний фотоэффект
- •Вентильный фотоэффект
- •Корпускулярно-волновой дуализм
- •Лекция 12. (2 часа) Теория атома водорода по Бору
- •Закономерности линейчатых спектров водорода
- •Модель атома Томсона
- •Опыты Резерфорда
- •Планетарная модель атома Резерфорда
- •Постулаты Бора
- •Опыты Франка и Герца
- •Лекция 13. (2 часа) Элементы квантовой механики
- •Гипотеза Луи-де-Бройля
- •Корпускулярно-волновые свойства частиц
- •Соотношение неопределенностей
- •Электрон в электронно-лучевой трубке и в атоме
- •Длина волны де-Бройля покоящихся тел
- •Физический смысл волновой функции
- •Волновая функция заряженной частицы
- •Операторы импульса и энергии
- •Уравнение Шредингера
- •Лекция 14. (2 часа) Оптические квантовые генераторы
- •Спонтанные и вынужденные переходы, их вероятность
- •Инверсная населенность уровней
- •Лекция 15. (2 часа) Элементы зонной теории твердых тел
- •Лекция 16. (2 часа) Радиоактивность
- •Радиоактивность
- •Методы регистрации радиоактивного излучения
- •Правила радиоактивного смещения
- •Изотопы, изобары, изотоны, изомеры
- •Закон радиоактивного распада, активность
- •Атомное ядро
- •Ядерные силы
- •Современные представления о природе электромагнитных и ядерных сил
- •Туннельный эффект
- •Понятие об устойчивости ядра
- •Ядерные реакции и элементарные частицы
- •Ядерные реакции
- •Реакции с медленными частицами
- •Реакции с быстрыми нейтронами
- •Деление тяжелых ядер
- •Ядерное оружие и ядерная энергетика
- •Термоядерные реакции
- •Водородная бомба
- •Управляемые термоядерные реакции
- •Элементарные частицы Виды взаимодействий элементарных частиц
- •Систематика элементарных частиц
- •Частицы и античастицы
- •Законы сохранения
Лекция 8. ( 2 часа) Дифракция света
(Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии. Дифракция Фраунгофера на одной щели и на дифракционной решетке.)
Принцип Гюйгенса — Френеля
Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи любых неоднородностей (препятствий) от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д.
Различают два вида дифракции:
1. Дифракция в непараллельных лучах (дифракция Френеля), когда на препятствие падает сферическая (или плоская) волна, а дифракционная картина наблюдается на экране, находящемся за ним на конечном расстоянии от препятствия.
2. Дифракция в параллельных лучах (дифракция Фраунгофера), когда на препятствие падает плоская волна, а дифракционное изображение источника света наблюдается на экране, расположенном в фокальной плоскости собирающей линзы, установленной на пути прошедшего за препятствие света.
Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени.
П
усть
плоская волна нормально падает на
отверстие в непрозрачном экране (рис.
1). Согласно Гюйгенсу, каждая точка
волнового фронта служит источником
вторичных волн (в однородной изотропной
среде они сферические). Построив
огибающую вторичных волн видим, что
волна огибает края отверстия, т. е. фронт
волны заходит в область геометрической
тени.
Принцип Гюйгенса решает задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.
Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. В качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн.
Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света.
Метод зон Френеля
Принцип Гюйгенса является чисто геометрическим способом построения волновых поверхностей. Он никак не связан с физической природой волн и применим как к упругим, так и к электромагнитным волнам в равной мере. Найдем в произвольной точке М амплитуду световой волны, распространяющейся в однородной среде из точечного источника S (рис. 2).
Согласно принципу Гюйгенса — Френеля, заменим действие источника S действием воображаемых источников, расположенных на вспомогательной поверхности Ф, являющейся поверхностью фронта волны, идущей из источника S. Френель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отличались на /2, т. е. Р1М- Р0М=Р2М- Р1М=Р3М- Р2М=...= /2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами b+/2, b+2/2, b+3/2, … .
Так как колебания от соседних зон проходят до точки М расстояния, отличающиеся на /2, то в точку М они приходят в противоположной фазе и при наложении будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М
A=А1- А2+ А3- А4+ ... , (1)
г
де
А1,
А2,
... — амплитуды колебаний, возбуждаемых
1-й, 2-й, ... зонами.
Для оценки амплитуд колебаний найдем площади зон Френеля. Пусть внешняя граница m-й зоны выделяет на волновой поверхности сферический сегмент высоты hm (рис. 3). Если площадь этого сегмента m, то площадь m-й зоны Френеля равна m = m - m-1, где m-1 — площадь сферического сегмента, выделяемого внешней границей (m-1)-й зоны. Из рисунка следует, что
(2)
Учитывая, что <<а и <<b, получим
(3)
Площадь сферического сегмента и площадь m-й зоны Френеля соответственно равны
(4)
Выражение (4) не зависит от номера зоны m; следовательно, при не слишком больших m площади зон Френеля одинаковы.
Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол m (рис. 3) между нормалью n к поверхности зоны и направлением на М, т. е. действие зон постепенно убывает от центральной (около Р0) к периферическим (до нуля). Кроме того, интенсивность излучения в направлении точки М уменьшается с ростом номера зоны m и вследствие увеличения расстояния от зоны до точки М. Учитывая оба этих фактора, можем записать
А1> А2> А3> А4 … .
Общее
число зон Френеля, умещающихся на
полусфере, очень велико; например,
при а=b=10
см и
= 0,5 мкм оно равно
Так как число зон Френеля велико, то в качестве допустимого приближения можно считать, что амплитуда колебания Аm от некоторой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкающих к ней зон, т. е.
.
(5)
Тогда выражение (1) можно записать в виде
.
(6)
так как выражения, стоящие в скобках, согласно (3-5), равны нулю, а оставшаяся часть от амплитуды последней зоны ±Аm/2 ничтожно мала.
Таким образом, амплитуда, создаваемая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной центральной зоной. Следовательно, действие всей волновой поверхности на точку М сводится к действию ее малого участка, меньшего центральной зоны.
Если
в выражении (3-2) положим, что высота
сегмента hm<<а
(при не слишком больших m),
тогда
Подставив сюда значение (3), найдем
радиус внешней границы m-й
зоны Френеля:
(7)
При a=b=10 см и =0,5 мкм радиус центральной зоны r1= 0,158 мм. Следовательно, распространение света к точке М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, т. е. прямолинейно. Таким образом, принцип Гюйгенса — Френеля позволяет объяснить прямолинейное распространение света.
Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально с использованием зонных пластинок — стеклянных пластинок, состоящих из прозрачных и непрозрачных концентрических колец, построенных по принципу расположения зон Френеля, т. е. с радиусами rm зон Френеля, определяемыми выражением (3-7) для заданных значений a, b и (m = 0, 2, 4, ... для прозрачных и m = 1, 3, 5, ... для непрозрачных колец). Если поместить зонную пластинку на расстоянии а от точечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки, то для света длиной волны она перекроет четные зоны и оставит свободными нечетные начиная с центральной. Результирующая амплитуда A=А1+А3+А5+… должна быть больше, чем при полностью открытом фронте. На опыте зонная пластинка во много раз увеличивает интенсивность света в точке М, действуя подобно собирающей линзе.
