
- •От автора
- •1.2. Понятие. Содержание и объем понятия. Зависимость между объемами понятий
- •1.3. Определение понятия
- •1.4. Методика введения определений понятий
- •1.5. Пропедевтика понятий
- •1.6. Применение понятий и их определений
- •Лекция 2 методика обучения учащихся решению математических задач
- •2.1. Задачи. Роль задач в обучении
- •2.2. Эвристические методы решения задач
- •2.3. Типовые задачи и методы их решения
- •2.4. Алгоритмические методы решения задач
- •2.5. Этапы решения задачи
- •2.6. Общие умения по решению задач
- •2.7. О самоконтроле при решении математических задач и о возможностях его формирования
- •2.8. Методика обучения учащихся решению задач в теме «Признаки равенства треугольников»
- •Теоремы. Методика обучения теоремам и их доказательствам
- •3.3. Приемы, способствующие формированию у учащихся потребности в доказательствах
- •4.1. Различные точки зрения на упражнения. Актуальность знания требований к системе упражнений
- •4.2. Принципы отбора и составления систем упражнений
- •5.1. Программа по математике
- •5.2. Тематическое планирование
- •5.3. Подготовка учителя к уроку
- •6.1. Мышление как процесс разрешения проблемных ситуаций
- •6.2. Сущность проблемного подхода в обучении
- •6.4. Уровни проблемного подхода в обучении
- •6.5. Исследовательский метод в обучении математике
- •7.1. Из истории теории деятельности
- •7.2. Компоненты структуры деятельности
- •7.3. Основные положения теории деятельности
- •7.4. Ориентировочная деятельность. Ориентировочная часть действия
- •7.5. Характеристики действия
- •7.6. Деятельность и личность
- •8.1. О целях развития мышления при обучении математике в школе
- •8.2. Основные принципы построения теорий развивающего обучения
- •8.3. Средства и условия развития мышления
- •9.1. Актуальность проблемы развития логического мышления учащихся
- •9.2. История проблемы развития логического мышления учащихся
- •9.3. Содержание проблемы развития логического мышления при обучении математике в школе*
- •9.4. Пути решения проблемы развития логического мышления учащихся
- •10.1. Актуальность проблемы развития познавательного интереса
- •10.2. Понятие о познавательном интересе
- •10.3. Пути формирования познавательного интереса
- •10.4. Взаимосвязь проблем воспитания познавательного интереса и развития мышления в процессе обучения математике
4.1. Различные точки зрения на упражнения. Актуальность знания требований к системе упражнений
В методике преподавания математики существуют две различные точки зрения на упражнения. Одна из них понятие упражнения рассматривает как синоним понятия задача (В.А. Онищук, Г.И. Саранцев), и исходя из этого упражнения наделяются различными функциями: мотивационной, организации подготовки к изучению нового материала, усвоения, закрепления и повторения изученного.
Чтобы специально выделить этапы закрепления и применения знаний, выяснить особенности организации деятельности учащихся на этих этапах, рассмотрим упражнения в их традиционном смысле - как многократное выполнение сходных действий с целью овладения умениями и навыками (М.А. Данилов, Я.И. Гру-денов). С точки зрения теории деятельности упражнение - это та задача, для решения которой имеется ориентировочная основа. Упражнение предназначено для усвоения способа действия, отдельных операций действия, доведения действий до свернутой формы - до операции. При таком понимании упражнение - частный случай задачи, используемый при закреплении и применении.
В школьном курсе математики закреплению подлежат определения понятий, теоремы, правила, предписания по выполнению определенных действий.
При закреплении определений необходимо предусмотреть упражнения на выделение существенных свойств понятий, на их запоминание, на установление взаимосвязей между существенными свойствами, на усвоение терминологии, на установление объема понятия, на узнавание понятия, на выделение «зоны поиска» понятия, на получение следствий из имеющихся свойств понятий, раскрытие взаимосвязей с другими понятиями.
При закреплении теорем упражнения способствуют анализу формулировки и ее усвоению, запоминанию, узнаванию, уяснению области применения теоремы, получению следствий из теорем, установлению взаимосвязей с различными теоремами.
При закреплении правил, предписаний отрабатываются отдельные шаги и действие целиком, выясняется область их применения, особые случаи их использования.
Умения и навыки создаются в процессе выполнения упражнений, но не всякая их система приводит к формированию соответствующих умений и навыков.
Вопрос о системах упражнений является объектом внимания методистов, психологов, учителей. Однако он еще не стал традиционным вопросом методики преподавания математики, таким, например, как методика решения задач, изучения понятий. Есть необходимость в специальном рассмотрении вопроса в силу следующего важного обстоятельства.
В ряде школьных учебных пособий системы упражнений страдают различными недостатками, очень часто учителю самому приходится отбирать упражнения из имеющейся системы. Учитель является главным лицом, предъявляющим систему упражнений. «Там, где начинается чуть-чуть, - заметил И.Е. Репин, - начинается искусство». Чтобы владеть этим «чуть-чуть», необходимо знать определенные закономерности. Укажем отдельные закономерности, которых полезно придерживаться при отборе и составлении системы упражнений и при их выполнении.